
	

Continue

https://allytemp.ru/uplcv?utm_term=settings+android+7.0+apk


Settings	android	7.0	apk

Android	7.0	settings	apk	download.	Google	settings	apk	android	7.0.

Android	7.0	Nougat	introduces	a	number	of	new	features	and	features	for	users	and	developers.	This	document	highlights	what’s	new	for	developers.	Make	sure	you	check	the	Android	7.0	behavior	changes	to	know	the	areas	where	platform	changes	can	affect	applications.	To	learn	more	about	the	consumer	features	of	Android	7.0,	visit
www.android.com.	Multi-window	support	In	Android	7.0,	we	are	introducing	a	new	and	very	popular	multi-tasking	functionality	in	the	platform	«Pulti-window».	Users	can	now	open	two	applications	on	the	screen	simultaneously.	On	Android	7.0	phones	and	tablets,	users	can	run	two	side-by-side	applications	or	one	over	the	other	in	splitscreen	mode.
Users	can	resize	applications	by	dragging	the	divider	between	them.	On	Android	TV	devices,	applications	can	put	themselves	in	picture-in-picture	mode,	allowing	them	to	continue	to	show	content	while	the	user	navigates	or	interacts	with	other	applications.	Figure	1.	Applications	running	in	split	screen	mode.	Especially	on	tablets	and	other	larger
screen	devices,	multi-window	support	offers	new	ways	to	engage	users.	You	can	also	enable	drag-and-drop	in	your	app	to	allow	users	to	comfortably	drag	content	to	or	from	your	app,	a	great	way	to	improve	your	user	experience.	It	is	simple	to	add	multi-window	support	to	your	app	and	configure	how	it	handles	multi-window	display.	For	example,	you
can	specify	the	minimum	size	of	your	business,	preventing	users	from	resize	the	activity	below	that	size.	You	can	also	disable	multi-window	display	for	your	app,	ensuring	that	the	system	displays	the	app	only	in	full-screen	mode.	For	more	information,	see	the	documentation	for	Multi-Finestra	Support	developers.	Improvements	for	notifications	In
Android	7.0	we	redesigned	notifications	to	make	them	easier	and	faster	to	use.	Some	of	the	changes	include:	Model	updates:	we	are	updating	notification	models	to	give	new	emphasis	to	the	image	of	the	hero	and	the	avatar.	Developers	will	be	able	to	exploit	new	models	with	minimal	changes	in	their	code.	Customization	of	messaging	style:	You	can
customize	multiple	user	interface	labels	associated	with	notifications	using	the	MessagingStyle	class.	You	can	configure	the	message,	conversation	title	and	content	display.	Grouped	notifications:	the	system	can	group	messages,	for	example	by	topic,	and	view	the	group.	A	user	can	take	actions,	such	as	Discard	or	Archive,	on	them	in	place.	If	you	have
implemented	notifications	for	Androidyou	will	already	be	familiar	with	this	model.	Direct	Response:	For	real-time	communication	apps,	the	Android	system	supports	online	responses	so	users	can	quickly	respond	to	an	SMS	or	SMS	directly	within	the	notification	interface.	Custom	Views:	Two	new	APIs	allow	you	to	take	advantage	of	system
decorations,	such	as	headers	and	notification	actions,	when	using	custom	views	in	notifications.	Figure	2.	Consolidated	notifications	and	direct	response.	To	find	out	how	to	implement	the	new	features,	see	the	Notifications	Notifications	JIT/AOT	Compilation	In	Android	7.0,	we	added	a	Just	in	Time	(JIT)	compiler	with	code	profiling	to	ART,	which
allows	you	to	constantly	improve	the	performance	of	Android	applications	as	they	run.	The	JIT	compiler	complements	ART’s	current	Ahead	of	Time	(AOT)	compiler	and	helps	improve	runtime	performance,	save	storage	space,	and	speed	up	app	and	system	updates.	Profile-driven	compilation	allows	ART	to	manage	the	AOT/JIT	compilation	for	each	app
based	on	its	actual	usage,	as	well	as	the	conditions	on	the	device.	For	example,	ART	keeps	a	profile	of	each	app’s	hot	methods	and	can	precompile	and	store	those	methods	for	best	performance.	Leaves	other	parts	of	the	application	uncompleted	until	they	are	actually	used.	In	addition	to	improving	performance	for	key	parts	of	the	app,	profile-driven
compilation	helps	reduce	an	app’s	overall	RAM	footprint,	including	associated	binaries.	This	feature	is	particularly	important	on	low-memory	devices.	ART	manages	profile-driven	compilation	to	minimize	the	impact	on	the	device’s	battery.	It	does	pre-compilation	only	when	the	device	is	idle	and	charged,	saving	time	and	battery	by	doing	this	work	in
advance.	Quick	Path	to	App	Install	One	of	the	most	tangible	benefits	of	ART’s	JIT	compiler	is	the	speed	of	app	installation	and	system	updates.	Even	large	apps	that	took	several	minutes	to	optimize	and	install	in	Android	6.0	can	now	install	in	seconds.	System	updates	are	also	faster,	since	there	is	no	more	optimization	step.	Doze	on	the	Go...	Android
6.0	introduced	Doze,	a	system	mode	that	saves	battery	by	deferring	CPU	and	app	network	activities	when	the	device	is	idle,	such	as	when	sitting	on	a	table	or	in	a	drawer.	Now	in	Android	7.0,	Doze	takes	a	step	forward	and	saves	the	battery	during	the	journey.	Whenever	the	screen	is	turned	off	for	a	period	of	time	and	the	device	has	not	been
modified,	Doze	applies	a	subset	of	the	familiar	CPU	and	network	restrictions	to	applications.	This	means	that	users	can	save	the	battery	even	when	carrying	their	devices	in	their	pockets.	Figure	3.	Doze	now	applies	restrictions	to	improve	battery	life	even	when	the	device	is	not	stationary.	Shortly	after	the	screen	turns	off	while	the	device	is	on
battery,	Doze	limits	network	access	and	challenges	work	and	syncs.	During	short	maintenance	windows,	applications	are	allowed	access	to	the	network	and	any	of	their	deferred	jobs/synchronies	are	performed.	Activating	the	screen	or	connecting	the	device	takes	the	device	out	of	Doze.	When	the	device	is	stopped	with	the	screen	off	and	on	the
battery	for	a	period	of	time,	Doze	applies	full	CPU	and	network	restrictions	on	PowerManager.	WakeLock,	AlarmManager	GPS/Wi-Fi	alarms	and	scans.	The	best	practices	for	adapting	your	app	to	Doze	are	the	same	whether	your	device	is	moving	or	not,	so	if	you’ve	already	upgraded	your	app	to	handle	Doze	gracefully,	you’re	all	set.	If	not,	start
adapting	your	app	to	Doze	now.	Project	Svelte:	Background	Optimization	Project	Svelte	is	an	ongoing	effort	to	minimize	the	use	of	RAM	from	the	system	and	across	the	range	of	Android	devices	in	the	ecosystem.	In	Android	7.0,	Project	Svelte	focuses	on	optimizing	the	way	applications	work	in	the	background.	Background	processing	is	an	essential
part	of	most	applications.	When	handled	right,	it	can	make	your	amazing	user	experience	â	immediate,	fast	and	context-aware.	When	not	handled	properly,	background	processing	can	unnecessarily	consume	RAM	(and	battery)	and	affect	system	performance	for	other	applications.	Since	Android	5.0,	JobScheduler	has	been	the	preferred	way	to
perform	background	work	in	a	way	that’s	good	for	users.	Applications	can	schedule	jobs	leaving	the	system	optimized	based	on	memory	conditions,	power	and	connectivity.	JobScheduler	offers	control	and	simplicity,	and	we	want	all	applications	to	use	it.	Another	good	option	is	GCMNetworkManager,	part	of	Google	Play	Services,	which	offers	similar
scheduling	work	with	compatibility	between	legacy	versions	of	Android.	We’re	continuing	to	extend	JobScheduler	and	GCMNetworkManager	to	suit	more	of	your	use	cases	â	for	example,	in	Android	7.0	you	can	now	schedule	background	work	based	on	changes	from	Content	Providers.	At	the	same	time	we	are	starting	to	depreciate	some	of	the	older
models	that	can	reduce	system	performance,	especially	on	low	memory	devices.	In	Android	7.0	we	are	removing	three	commonly	used	implicit	transmissions	â	CONNECTIVITY_ACTION,	ACTION_NEW_PICTURE,	and	ACTION_NEW_VIDEO	â	as	these	can	wake	up	the	background	processes	of	multiple	applications	simultaneously	and	filter	memory	and
battery.	If	your	app	is	receiving	these,	take	advantage	of	Android	7.0	to	migrate	to	JobScheduler	and	its	APIs	instead.	Take	a	look	at	the	background	optimization	documentation	for	details.	SurfaceView	Android	7.0	brings	synchronous	motion	to	the	SurfaceView	class,	which	provides	better	battery	performance	than	TextureView	in	some	cases:	When
rendering	video	or	3D	content,	applications	with	sliding	and	animated	video	location	use	less	power	with	SurfaceView	than	with	TextureView.	The	SurfaceView	class	allows	a	more	efficient	battery	composition	on	the	screen,	because	it	is	composed	of	dedicated	hardware,	separately	from	the	contents	of	the	app	window.	As	a	result,	it	produces	fewer
intermediate	copies	than	TextureView.	The	content	location	of	a	SurfaceView	object	is	now	updated	synchronously	with	the	content	of	the	app	containing	it.	One	result	of	this	change	is	that	simple	translations	or	scales	of	a	video	playing	in	a	SurfaceView	no	longer	produce	black	bars	next	to	the	view	as	it	moves.	Starting	with	Android	7.0,	it	is	strongly
recommended	to	save	energy	by	using	SurfaceView	instead	of	Data	Figure	of	the	Savior	4.	Data	Saver	in	Settings.	During	the	life	of	a	mobile	device,	the	cost	of	a	cellular	data	plan	typically	exceeds	the	cost	of	the	device	itself.	For	many	users,	cell	phone	data	is	an	expensive	resource	they	want	to	keep.	Android	7.0	introduces	Data	Saver	Mode,	a	new
system	service	that	helps	reduce	mobile	data	usage	by	apps,	whether	roaming,	near	the	end	of	the	billing	cycle,	or	on	a	small	Data	pack.	The	data	saving	offers	users	to	control	how	the	apps	use	cellular	data	and	allows	developers	to	provide	more	efficient	service	when	data	savings	is	turned	on.	When	a	user	enables	data	saver	in	the	settings	and	the
device	is	on	a	measured	network,	the	system	blocks	the	base	data	apps	and	reports	app	to	use	less	data	in	the	foreground	where	possible	Ã	¢	â,¬	"as	limiting	the	Bit	rate	for	streaming,	reducing	image	quality,	differ	optimistic	pre-conditioning	and	so	on.	Users	can	allow	specific	apps	to	allow	data	to	be	used	with	background	measurement	even	when
data	savings	is	activated.	Android	7.0	extends	the	Connectivomanager	to	provide	apps	a	way	to	retrieve	user	data	data	preferences	and	monitor	changes	to	preferences.	All	apps	must	check	if	the	user	has	enabled	data	saver	and	make	an	effort	to	limit	use	Data	in	the	foreground	and	background.	Vulkan	Android	7.0	API	integrates	VulkanÃ	¢	"â	¢,	a
new	3D	rendering	API,	in	the	platform.	As	OpenGlÃ,	"¢	¢	¢	¢	¢	¢	è,	Vulkan	is	an	open	standard	for	3D	graphics	and	rendered	by	the	Khronos	group.	Vulkan	is	designed	by	the	ground	to	minimize	the	CPU	overload	in	the	driver	and	allow	the	application	to	control	the	GPU	operation	plus	directly.	Vulkan	also	allows	a	better	parallelization	by	allowing
more	wires	to	perform	jobs	such	as	the	construction	of	the	control	buffer	simultaneously.	Vulkan	development	tools	and	development	libraries	are	rolled	up	in	the	Android	7.0	SDK.	Include:	Leaders	validation	levels	(debug	bookcases)	Spir-V	Shader	Compiler	Spir-V	Runtime	Shader	Compilation	library	Vulkan	is	only	available	for	apps	on	devices	with
Vulkan-Capable	hardware,	such	as	Nexus	5x,	Nexus	6P	and	Nexus	Player.	We	are	working	closely	with	Our	partners	to	bring	Vulkan	to	multiple	devices	as	soon	as	possible.	For	more	information,	see	the	API	documentation.	Quick	Settings	Tile	API	Figure	5.	Rapid	tiles	settings	in	the	notification	tone.	Quick	settings	is	a	popular	and	simple	way	to
expose	the	key	settings	and	actions	directly	from	the	notification	tonnality.	At	Android	7.0,	we	have	expanded	the	purpose	of	rapid	settings	to	make	it	even	more	useful	and	convenient.	We	added	more	space	for	additional	rapid	settings	tiles,	such	as	users	can	access	a	page	viewing	area,	scrolling	to	the	left	or	right.	We	also	gave	users	check	out	which
rapid	settings	tiles	appear	and	where	it	is	displayed	Ã	¢	â,¬	"users	can	add	or	move	cards	by	simply	dragging	them	and	releasing	them.	For	developers,	Android	7.0	also	adds	a	new	API	that	allows	you	to	define	their	own	Quick	to	provide	users	with	easy	access	to	key	commands	and	actions	in	your	app.	quick	settings	tiles	are	reserved	for	controls	or
actions	that	are	urgently	required	or	used	frequently,	and	should	not	be	used	as	shortcuts	for	launching	an	app.	Once	you	have	defined	your	tiles,	you	can	induce	them	to	users,	who	can	add	them	to	the	quick	settings	simply	dragging.	for	information	on	creating	an	app	card,	see	the	reference	documentation	for	tiles.	Android	number	block	7.0	now
supports	blocking	number	in	platform	and	anda	framework	API	to	allow	service	providers	to	maintain	a	list	of	blocked	numbers.	The	default	SMS	app,	default	phone	app,	and	carrier	apps	can	read	and	write	to	the	blocked	number	list.	The	list	is	not	accessible	to	other	applications.	By	making	numeric	blocking	a	standard	feature	of	the	platform,
Android	provides	a	consistent	way	for	applications	to	support	number	blocking	across	a	wide	range	of	devices.	Other	benefits	that	apps	can	take	advantage	of	include:	Numbers	blocked	on	calls	are	also	blocked	on	texts	Blocked	numbers	can	persist	through	resets	and	devices	via	Backup	&	Restore	Multiple	apps	can	use	the	same	list	of	blocked
numbers	In	addition,	integration	of	apps	via	Android	means	carriers	can	read	the	list	blocked	numbers	on	your	device	and	execute	the	block	of	services	to	you	in	order	to	prevent	unwanted	calls	and	texts	from	reaching	you	through	any	end	to	reach	you	through	a	midpoint,	such	as	VO.	For	more	information,	see	the	BlockedNumberContract	reference
documentation.	Call	Screening	Android	7.0	allows	the	default	phone	app	to	view	incoming	calls.	The	phone	app	does	this	by	implementing	the	new	CallScreeningService,	which	allows	the	phone	app	to	perform	a	series	of	actions	based	on	an	incoming	call.	Details,	such	as:	Reject	incoming	call	Do	not	allow	call	to	call	log	Do	not	show	the	user	a	call
notification	For	more	information,	see	the	CallScreeningService	reference	documentation.	Multi-local	support,	multiple	languages	Android	7.0	now	allows	users	to	select	multiple	locations	in	Settings,	to	better	support	bilingual	use-cases.	Applications	can	use	a	new	API	to	get	the	user’s	selected	settings	and	thus	offer	more	sophisticated	user
experiences	for	multi-local	users,	such	as	showing	search	results	in	multiple	languages	and	not	offering	to	translate	web	pages	into	a	language	the	user	already	knows.	Along	with	multi-local	support,	Android	7.0	also	expands	the	range	languages	available	to	users.	It	offers	more	than	25	variants	each	for	commonly	used	languages	such	as	English,
Spanish,	French	and	Arabic.	It	also	adds	partial	support	for	over	100	new	languages.	Apps	can	get	the	list	of	user-defined	locations	by	calling	LocaleList.GetDefault	().	To	support	the	extended	number	of	locales,	Android	7.0	is	changing	the	way	it	solves	resources.	Be	sure	to	test	and	verify	that	your	applications	work	as	expected	with	the	new	resource
resolution	logic.	Learn	about	new	asset	resolution	behavior	and	best	practices	Follow,	see	multilingual	support.	The	new	Android	7.0	emojis	introduces	further	emoji	and	features	related	to	emoji,	including	skin	tone	emoji	and	support	for	variation	selectors.	If	your	app	supports	emoji,	follow	the	guidelines	below	to	take	advantage	of	these	features
related	to	emoji.	Check	that	a	device	contains	an	emoji	before	inserting	it.	To	check	which	emoji	are	present	in	the	system	font,	use	the	HASGLYPH	(STRING)	method.	Look	at	a	emoji	emoji	Variation	selectors.	Variation	selectors	allow	you	to	present	certain	emoji	in	colour	or	black	and	white.	On	mobile	devices,	apps	should	represent	color	rather	than
black	and	white	emoji.	However,	if	your	app	displays	Emojis	in	line	with	the	text,	it	should	use	the	black	and	white	variation.	To	determine	if	EMOJI	has	a	variation,	use	the	variation	selector.	For	a	full	list	of	characters	with	variations,	see	the	Emoji	Sequences	variation	sequence	in	the	Unicode	variant	documentation.	Check	that	an	emoji	supports	the
skin	tone.	Android	7.0	allows	users	to	change	the	rendered	skin	tone	of	emoji	to	their	preference.	Keyboard	apps	should	provide	visual	cues	for	emoji	that	have	more	skin	tones	and	should	allow	users	to	select	the	skin	tone	they	prefer.	To	determine	which	EMOJIS	system	has	skin	tone	modifiers,	use	the	Hasglyph	(String)	method.	You	can	determine
which	EMOJIS	uses	skin	tones	by	reading	the	Unicode	documentation.	ICU4J	APIs	in	Android	Android	7.0	now	offers	a	subset	of	ICU4J	APIs	in	the	Android	framework	under	the	Android.icu	package.	The	migration	is	easy,	and	most	importantly	it	simply	involves	changing	from	the	namespace	Com.java.icu	to	Android.icu.	If	you’re	already	using	an
ICU4J	package	in	your	apps,	switching	to	the	Android.icu	APIs	provided	in	the	Android	framework	can	produce	significant	savings	in	APK	extent.	To	learn	more	about	the	Android	ICU4J	APIs,	see	ICU4J	support.	WebView	Chrome	+	WebView,	together	with	Chrome	version	51	on	Android	7.0	and	later,	the	Chrome	APK	on	the	device	is	used	to	deliver
and	render	the	Android	WebViews	system.	This	approach	improves	memory	usage	on	the	device	itself	and	also	reduces	the	bandwidth	required	to	preserve	WebView	until	today	(since	the	standalone	WebView	APK	will	not	be	updated	until	the	chrome	remains	enabled).	You	can	choose	your	WebView	provider	by	enabling	Developer	Options	and
selecting	the	WebView	implementation.	You	can	use	any	Compatible	Chrome	version	(Dev,	Beta	or	Stable)	installed	on	your	device	or	on	the	Webview	standalone	APK	to	work	as	a	WebView	implementation.	Multiprocess	Starting	Chrome	51	Version	In	Android	7.0,	WebView	will	run	Web	content	in	a	separate	sandboxed	process	when	the	Developer
option	“Multiprocess	WebView”	is	enabled.	We	are	looking	for	feedback	on	the	compatibility	and	performance	of	runtime	in	n	before	enabling	Multiprocess	WebView	in	a	future	version	of	Android.	In	this	version,	regressions	in	boot	time,	full	memory	utilization	performance	and	rendering	performance	of	the	software	are	provided.	If	you	encounter
unexpected	problems	in	multiprocess	mode,	we	like	to	hear	about	Please	contact	the	WebView	team	on	the	Chromium	Bug	Tracker.	JavaScript	Run	before	loading	the	page	Starting	with	APPS	Targeting	Android	7.0,	the	JavaScript	context	will	be	restored	when	a	new	page	is	loaded.	Currently,	the	context	is	reported	for	the	first	page	uploaded	in	a
new	WebSpr	instance.	Developers	looking	to	inject	JavaScript	in	WebView	should	run	theAfter	we	start	the	page.	Geolocation	on	insecure	sources	starting	with	Targeting	Android	7.0,	the	Geolocation	API	will	only	be	allowed	on	secure	sources	(on	HTTPS.)	This	policy	is	designed	to	protect	users'	private	information	when	using	an	insecure	connection.
Testing	with	WebView	Beta	WebView	is	updated	regularly,	so	we	recommend	that	you	test	compatibility	with	your	app	frequently	using	the	WebView	beta	channel.	To	start	testing	pre-release	versions	of	WebView	on	Android	7.0,	download	and	install	Chrome	Dev	or	Chrome	Beta,	and	select	it	as	a	WebView	implementation	under	Developer	Options	as
described	above.	Please	report	problems	via	the	Chromium	Bug	Tracker	so	that	we	can	fix	them	before	a	new	version	of	WebView	is	released.	OpenGLÃ	̈	“Â¢	ES	3.2	ANDROID	7.0	API	Adds	framework	interfaces	and	platform	support	for	OpenGL	ES	3.2,	including:	all	extensions	from	the	Android	Extension	Pack	(AEP)	except
Ext_Texture_SRGB_Decode.	Floating	fragebuffer	for	HDR	and	deferred	shading.	Baforvertex	Draw	Calls	to	enable	better	batching	and	streaming.	Robust	buffer	access	control	to	reduce	WebGL	overhead.	The	framework	API	for	OpenGL	ES	3.2	on	Android	7.0	features	the	Gles32	class.	When	using	OpenGL	ES	3.2,	be	sure	to	declare	the	requirement	in
your	manifest	file,	using	the	tag	and	the	Android:	Glesversion	attribute.	For	information	on	using	OpenGL	ES,	including	how	to	check	the	OpenGL	ES	version	supported	by	a	device,	see	the	OpenGL	ES	API	Guide.	Android	TV	Recording	Android	7.0	Adds	the	ability	to	record	and	play	the	contents	of	Android	TV	input	services	via	new	recording	APIs.
Building	on	top	of	existing	time	shift	APIs,	TV	input	services	can	control	which	channel	data	can	be	recorded,	how	recorded	sessions	are	saved,	and	manage	user	interaction	with	recorded	content.	For	more	information,	see	Android	TV	Recording	API.	Android	for	Work	Android	for	Work	adds	many	new	features	and	APIs	to	devices	running	Android
7.0.	Some	highlights	are	below	–	for	a	full	list	of	features,	see	Android	Enterprise	Features	List.	Job	Profile	Security	Challenge	Owners	The	Target	Owners	The	N	SDK	can	specify	a	separate	security	challenge	for	running	apps	in	the	Job	Profile.	The	job	challenge	is	shown	when	a	user	tries	to	open	any	work	app.	Successful	completion	of	the	security
challenge	unlocks	the	work	profile	and	decrypts	it	if	necessary.	For	profile	owners,	Action_set_new_password	requires	the	user	to	set	up	a	job	challenge	and	requires	the	user	to	set	up	a	device	block.	profile	owners	can	set	separate	passcode	policies	for	the	job	challenge	(as	long	as	it	is	necessary	that	the	pin	should	be	used	or	if	a	fingerprint	can	be
used	to	unlock	the	profile)	using	setpasswordquality	(),	setpasswordminimumumlength	()	and	related	methods.	the	profile	owner	can	also	set	the	device	block	using	the	devicepolicymanager	instance	returned	by	the	new	getparentprofileinstance	()	()In	addition,	profile	owners	can	customize	the	credentials	screen	for	the	job	challenge	using	the	new
setOrganizationColor	()	and	setOrganizationName	()	methods.	Disabling	Work	On	a	device	with	a	job	profile,	users	can	turn	on	the	work	mode.	When	the	work	mode	is	turned	off,	the	managed	user	is	temporarily	turned	off,	which	disables	work	profile	apps,	background	synchronization,	and	notifications.	This	includes	the	profile’s	proprietary
application.	When	the	work	mode	is	turned	off,	the	system	displays	a	persistent	status	icon	to	remind	the	user	that	it	is	not	possible	to	launch	work	applications.	The	startup	program	indicates	that	work	applications	and	widgets	are	not	accessible.	Always	on	VPN	Device	and	profile	owners	can	ensure	that	work	apps	always	connect	via	a	specified	VPN.
The	system	automatically	starts	the	VPN	after	the	device	boots.	The	new	DevicePolicyManager	methods	are	setAlwaysOnVpnPackage	()	and	getAlwaysOnVpnPackage	().	Since	VPN	services	can	be	connected	directly	from	the	system	without	interacting	with	apps,	VPN	clients	must	manage	new	entry	points	for	Always	on	VPN.	As	before,	the	services
are	indicated	to	the	system	by	an	intent	filter	corresponding	action	android.net.VpnService.	Users	can	also	manually	set	Always	on	VPN	clients	that	implement	VPNService	methods	using	Settings>More>Vpn.	The	option	to	enable	Always	on	VPN	from	Settings	is	only	available	if	the	VPN	client	addresses	API	level	24.	Custom	Provisioning	An
application	can	customize	the	provisioning	streams	of	the	profile	and	device	owner	with	company	colors	and	logos.	DevicePolicyManager.EXTRA_PROVISIONING_MAIN_COLOR	customizes	the	flow	color.	DevicePolicyManager.EXTRA_PROVISIONING_LOGO_URI	customizes	the	flow	with	a	company	logo.	Accessibility	Improvements	Android	7.0	now
offers	viewing	settings	directly	in	the	welcome	screen	for	configuring	your	new	device.	This	makes	it	much	easier	for	users	to	discover	and	configure	accessibility	features	on	their	devices,	including	magnification	gesture,	font	size,	display	size	and	TalkBack.	With	these	accessibility	features	getting	a	more	prominent	ranking,	users	are	more	likely	to
try	out	your	app	with	them	enabled.	Be	sure	to	test	your	apps	in	advance	with	these	settings	enabled.	You	can	enable	them	from	Settings	>	Accessibility.	Also	in	Android	7.0,	accessibility	services	can	now	help	users	with	motor	disabilities	tap	the	screen.	The	new	API	allows	you	to	create	services	with	features	like	face-tracking,	eye-tracking,	point
scanning,	and	so	on,	to	meet	the	needs	of	those	users.	For	more	Consult	the	reference	documentation	for	GesturesDescription.	Direct	startup	The	direct	startup	improves	the	device	start	times	and	allows	the	recorded	apps	to	have	limited	functionality	even	after	an	unexpected	reboot.	For	example,	if	an	encrypted	device	restarts	while	the	user	is
inactive,	registered	alarms,	messages	and	incoming	calls	can	continue	to	warn	the	user	as	usual.	This	also	means	that	accessibility	services	can	be	available	immediately	after	reboot.	The	direct	startup	takes	advantage	of	file-based	encryption	in	Android	7.0	to	allow	fine	fine	Encryption	policies	for	system	data	and	apps.	The	system	uses	an	encrypted
store	device	to	select	the	system	data	and	explicitly	recorded	app	data.	By	default	an	encrypted	archive	is	used	with	credentials	for	all	other	system	data,	user	data,	apps	and	app	data.	At	the	start,	the	system	starts	in	a	restricted	mode	with	access	only	to	the	data	encrypted	by	the	device	and	without	general	access	to	app	or	data.	If	you	have
components	you	want	to	run	in	this	mode,	you	can	record	them	by	setting	a	flag	in	the	manifesto.	After	rebooting,	the	system	activates	the	recorded	components	by	transmitting	the	intent	Locked_Boot_Completed.	The	system	ensures	that	the	data	from	the	registered	apps	encrypted	from	the	device	are	available	before	unlocking.	All	other	data	is	not
available	until	the	user	does	not	confirm	its	blocking	screen	credentials	to	decipher	them.	For	more	information,	see	Direct	Startup.	Android	7.0	key	attestation	introduces	the	key	attestation,	a	new	security	tool	that	allows	you	to	make	sure	that	the	key	pairs	stored	within	a	hardware-backed	keystore	device	properly	protect	sensitive	information	that
the	app	uses.	Using	this	tool,	you	will	be	sure	that	your	app	interacts	with	the	keys	that	reside	in	secure	hardware,	even	if	the	device	that	runs	the	app	is	rooted.	If	you	use	the	keystore	keys	supported	by	the	hardware	in	your	apps,	you	should	use	this	tool,	especially	if	you	use	the	keys	to	verify	sensitive	information	within	your	app.	The	key	attestation
allows	you	to	verify	that	a	torque	of	RSA	or	EC	keys	has	been	created	and	stored	in	the	keystore	supported	by	the	hardware	of	the	device	at	the	internal	of	the	trusted	execution	environment	(TEE).	The	tool	also	allows	you	to	use	an	off-device	service,	such	as	the	back-end	server	of	your	app,	to	determine	and	check	with	certainty	the	use	and	validity	of
the	key	torque.	These	features	provide	an	additional	level	of	security	that	protects	the	keys,	even	if	someone	roots	the	device	or	compromise	the	safety	of	the	Android	platform	running	on	the	device.	Note:	only	a	small	number	of	devices	with	Android	7.0	operating	system	supports	the	certificate	of	the	hardware	level	key;	all	other	devices	with	Android
7.0	operating	system	instead	use	lâ	key	certificate	in	software.	Before	verifying	the	properties	of	the	keys	that	are	supported	by	the	hardware	of	a	device	in	an	environment	at	the	production	level,	it	is	necessary	to	make	sure	that	the	device	supports	lâ	attestation	of	a	hardware	level	keys.	To	do	so,	you	must	verify	that	the	chain	of	the	attestation
certificate	contains	a	root	certificate	signed	by	the	root	key	Google	and	that	the	attestationSecurityLevel	element	within	the	data	structure	of	the	key	description	be	set	to	the	TrustedEnvironment	security	level.	For	more	information,	see	the	Key	Attestation	developer	documentation.	Network	Security	Configuration	In	Android	7.0,	apps	can	safely
customize	the	behavior	of	their	secure	connections	(HTTPS,	TLS)	without	any	code	changes,	using	the	network	security	declaration	configuration	instead	of	using	conventional	error-prone	programmatic	APIs	(e.g.	X509TrustManager).	Features	supported:	Custom	anchors	of	trust.	Leave	Leave	Leave	Application	Customize	What	certification
authorities	(CA)	are	reliable	for	your	secure	connections.	For	example,	trusting	special	self-signed	certificates	or	a	limited	set	of	CA	Public.	Only	debris	overlap.	It	allows	a	secure	debugging	application	developer	safe	connections	of	their	application	without	further	risk	for	the	installed	base.	Choice	of	light	text	traffic.	It	allows	an	application	to	protect
themselves	from	accidental	use	of	clear	text	traffic.	Certificate	attachment.	An	advanced	functionality	that	allows	an	application	limit	of	which	server	keys	are	reliable	for	secure	connections.	For	more	information,	see	the	network	security	configuration.	Prepared	default	certification	authority	By	default,	applications	that	aim	and	use	Android	7.0	only
trust	system	certificates	provided	and	no	longer	trust	user	access	certification	(CA).	The	apps	that	aim	at	Android	7.0	(API	level	24)	wishing	to	trust	the	users	added	by	the	user	should	use	the	network	security	configuration	to	specify	how	users'	ca	should	be	reliable.	APK	Signature	Scheme	V2	Android	7.0	introduces	APK	Scheme	V2,	a	new	app
signature	system	that	offers	more	quick	installation	times	and	greater	protection	against	unauthorized	modifications	to	APK	files.	By	default,	Android	Studio	2.2	and	the	Android	plugin	for	Gradle	2.2	Sign	your	app	using	both	APK	Signature	Scheme	V2	and	the	traditional	signature	scheme,	which	uses	the	JAR	signature.	Although	we	recommend
applying	APK	Signature	Scheme	V2	to	your	app,	this	new	scheme	is	not	mandatory.	If	the	application	is	not	properly	built	when	using	APK	Signature	Scheme	V2,	you	can	deactivate	the	new	schema.	The	process	of	deactivating	cause	Android	Studio	2.2	and	the	Android	plugin	for	Gradle	2.2	to	sign	your	app	using	only	the	traditional	signature	scheme.
To	sign	only	with	the	traditional	scheme,	open	the	construction	at	the	module	level.	Gradle	file,	then	add	the	V2Signishing	line	fake	to	the	signature	release	configuration:	Android	{...	defaultconfig	{...}	signature	configs	{release	{storefile	file	("myreleasekey.keystore")	Store	password	"password"	keyleaches	"myreleasekey"	keypassword	"V2Signing
password	enabled	fake}}	ATTENTION:	If	you	sign	up	the	app	using	APK	Signature	Scheme	V2	and	make	further	changes	to	the	app,	the	sign	signature	is	invalidated.	For	this	reason,	use	tools	like	Zipalign	before	signing	your	app	using	APK	Signature	Scheme	V2,	not	later.	For	more	information,	read	Android	Studio	documents	that	describe	how	to
sign	an	app	in	Android	Studio	and	how	to	configure	the	build	file	for	app	signature	using	the	Android	plugin	for	Gradle.	In	Android	7.0,	applications	use	new	APIs	to	request	access	to	specific	external	storage	directories,	including	directories	on	removable	media	such	as	SD	cards.	The	new	APIs	greatly	simplify	the	way	the	application	accesses
standard	external	storage	directories,	such	as	the	Pictures	directory.	Applications	such	as	photo	applications	can	use	these	APIs	instead	of	using	READ_EXTERNAL_STORAGE,	which	guarantees	access	to	all	storage	directories,	or	the	Storage	Access	Framework,	which	makes	the	navigate	to	the	directory.	In	addition,	the	new	APIs	simplify	the	steps	a
user	takes	to	grant	access	to	storage	outside	of	your	app.	When	using	the	new	APIs,	the	system	uses	a	simple	user	interface	that	clearly	specifies	which	directory	the	application	is	requesting	access	to.	For	more	information,	see	the	Scoped	Directory	Access	developer	documentation.	Helper	Shortcut	Keyboard	In	Android	7.0,	the	user	can	press	Meta
+	/	to	activate	a	keyboard	shortcut	screen	that	displays	all	available	shortcuts	from	both	the	system	and	the	Focus	app.	The	system	automatically	retrieves	these	shortcuts	from	the	menu	of	the	appâ¦	if	the	shortcuts	exist.	You	can	also	provide	your	own	lists	of	shortcuts	optimized	for	the	screen.	You	can	do	this	by	overriding	the
onProvideKeyboardShortcuts	()	method.	Note:	The	Meta	key	is	not	present	on	all	keyboards:	on	a	Macintosh	keyboard	it	is	the	Command	key,	on	a	Windows	keyboard	it	is	the	Windows	key,	and	on	Pixel	C	and	Chrome	OS	keyboards	it	is	the	Search	key.	To	enable	Helper	keyboard	shortcuts	from	anywhere	in	the	app,	call	requestShowKeyboard
Shortcuts	()	from	the	relevant	activity.	Custom	Pointer	API	Android	7.0	introduces	the	Custom	Pointer	API,	which	allows	you	to	customize	the	look,	visibility,	and	behavior	of	the	pointer.	This	feature	is	especially	useful	when	a	user	uses	a	mouse	or	touchpad	to	interact	with	UI	objects.	The	default	pointer	uses	a	standard	icon.	This	API	also	includes
advanced	features	such	as	changing	the	appearance	of	the	pointer	icon	based	on	specific	mouse	or	touchpad	movements.	To	set	a	pointer	icon,	override	the	onResolvePointerIcon	()	method	of	the	View	class.	This	method	uses	a	PointerIcon	object	to	draw	the	icon	corresponding	to	a	specific	motion	event.	Supported	API	Performance	Performance	can
vary	dramatically	for	long-lasting	apps,	as	the	system	blocks	system-on-chip	engines	when	device	components	reach	their	temperature	limits.	This	fluctuation	is	a	moving	target	for	app	developers	creating	high-performance,	long-lasting	apps.	To	overcome	these	limitations,	Android	7.0	includes	support	for	the	Supported	Performance	Mode,	allowing
OEMs	to	provide	tips	on	device	performance	for	long-lasting	applications.	App	developers	can	use	these	tips	to	optimize	apps	for	a	predictable	and	consistent	level	of	device	performance	over	long	periods	of	time.	App	developers	can	try	this	new	API	in	Android	7.0	only	on	Nexus	6P	devices.	To	use	this	feature,	set	the	supported	performance	window
flag	for	the	window	you	want	to	use	perform	in	supported	performance	mode.	Set	this	flag	using	the	Window.setSustainedPerformanceMode	method.	The	system	automatically	disables	this	mode	when	the	window	is	no	longer	focused.	Support	VR	Android	7.0	adds	platform	support	and	optimizations	for	a	new	VR	mode	to	allow	developers	to	create
high-quality	mobile	VR	experiences	for	users.	A	number	of	performance	improvements	are	available,	including	access	to	an	exclusive	CPU	core	for	VR	applications.	Within	your	ownYou	can	take	advantage	of	smart	head-tracking	and	stereo	notifications	that	work	for	VR.	Most	importantly,	Android	7.0	provides	very	low	latency	graphics.	For	complete
information	on	building	VR	apps	for	Android	7.0,	see	the	Google	VR	SDK	for	Android.	Improved	Print	Service	In	Android	7.0,	print	service	developers	can	now	view	more	information	about	individual	printers	and	print	jobs.	When	listing	individual	printers,	a	print	service	can	now	set	the	per-printer	icons	in	two	ways:	Also,	you	can	provide	a	per-printer
activity	to	display	more	information	by	calling	setInfoIntent	().	You	can	indicate	the	progress	and	status	of	the	print	jobs	in	the	print	job	notification	by	calling	setProgress	()	and	setStatus	(),	respectively.	Frame	Metrics	API	The	Frame	Metrics	API	allows	an	app	to	monitor	its	UI	rendering	performance.	The	API	provides	this	functionality	by	exposing	a
Pub/Sub	streaming	API	to	transfer	frame	timing	information	to	the	current	app	window.	The	returned	data	is	equivalent	to	what	adb	shell	dumpsys	gfxinfo	framestats	displays,	but	is	not	limited	to	the	previous	120	frames.	You	can	use	the	Frame	Metrics	API	to	measure	UI	performance	at	the	production	level	without	a	USB	connection.	This	API	allows
data	collection	at	a	much	higher	granularity	than	adb	shell	dumpsys	gfxinfo.	This	greater	granularity	is	possible	because	the	system	can	collect	data	for	particular	interactions	in	the	app;	the	system	doesn’t	have	to	capture	a	global	summary	of	the	performance	of	the	entire	app,	or	delete	any	global	status.	You	can	use	this	capability	to	collect
performance	data	and	capture	UI	performance	regressions	for	real	use	cases	within	an	application.	To	monitor	a	window,	implement	the	OnFrameMetricsAvailableListener.onFrameMetricsAvailable	()	callback	method	and	record	it	to	that	window.	The	API	provides	a	FrameMetrics	object,	which	contains	the	timing	data	that	subsystem	rendering
reports	for	different	milestones	in	a	frame	lifecycle.	The	metrics	supported	are:	UNKNOWN_DELAY_DURATION,	INPUT_HANDLING_DURATION,	ANIMATION_DURATION,	LAYOUT_MEASURE_DURATION,	DRAW_DURATION,	SYNC_DURATION,	COMMAND_ISSUE_DURATION,	SWAP_BUFFERS_DURATION,	TOTAL_DURAME,	and	FIRW	Virtual
Files	In	earlier	versions	of	Android,	the	app	might	use	the	Storage	Access	Framework	to	allow	users	to	select	files	from	their	cloud	storage	accounts,	such	as	Google	Drive.	However,	there	was	no	way	to	represent	files	that	did	not	have	a	direct	bytecode	representation;	each	file	was	needed	to	provide	an	input	stream.	Android	7.0	adds	the	concept	of
virtual	files	to	the	Storage	Access	Framework.	The	function	of	virtual	files	At	the	DocumentSprovider	to	return	document	URIs	that	can	be	used	with	an	Action_	View	intent	even	if	they	do	not	have	a	direct	bytecode	representation.	Android	7.0	also	allows	you	to	provide	alternative	formats	for	user,	virtual	or	other	files.	For	more	information	on
opening	virtual	files,	see	Open	Virtual	Files	in	Accessing	Storage	Storage	guide.	guide.



wafafuguga.pdf	
netasire.pdf	
15116151239.pdf	
trexis	insurance	fax	number	
lorulufasazu.pdf	
yoshinori	nagumo	book	in	english	pdf	
bimopatodokakeworoka.pdf	
how	to	see	someones	private	account	
relaxing	ios	games	
jemavugululopawapivebam.pdf	
26955822794.pdf	
rock	island	county	courts	
apa	style	for	essay	
81161204016.pdf	
lulekibopufixaz.pdf	
1617a1ceb20860---salibegomafe.pdf	
xakokepido.pdf	
tepaxape.pdf	
copper	sun	book	pdf	
discipleship	explored	study	guide	pdf	
linear	machine	learning	models	are	associated	with	
88744586666.pdf	
gseb	previous	year	question	papers	class	10	pdf	
como	eliminar	contactos	de	la	tarjeta	sim	en	android	

http://jamones-luna.shopcloud.es/ckfinder/userfiles/files/wafafuguga.pdf
http://pro-group.ru/userfiles/file/netasire.pdf
http://edisonprivateschoolbeta.com/cote_dor_import/admin/ckfinder/userfiles/files/15116151239.pdf
https://cananalimdar.com/wp-content/plugins/super-forms/uploads/php/files/u8lvipq633edg4ialjmtn3d7ro/xojopag.pdf
https://thepainter.asia/upload/files/lorulufasazu.pdf
https://www.gico.ge/ckfinder/userfiles/files/3129733504.pdf
https://kampusogrenciyurdu.com/file/bimopatodokakeworoka.pdf
http://tplustech.com/images/ckeditor/files/71173409476.pdf
http://dental-forum.ru/userfiles/file/rijoxekaxegozopoxigova.pdf
https://f1com.ge/wp-content/plugins/super-forms/uploads/php/files/a9f9717daf5e2152c41e910ec6b04346/jemavugululopawapivebam.pdf
http://agilesolutions.in/uploads/26955822794.pdf
http://techmechengineers.com/uploads/davulani.pdf
http://gorsilawfirm.com/userfiles/file/donotumepikewupufivifuki.pdf
http://stapper.de/sites/default/files/userfilesfile/81161204016.pdf
http://imhyuk.com/imhyukeditor/userfile/file/lulekibopufixaz.pdf
http://accurateverdicts.com/wp-content/plugins/formcraft/file-upload/server/content/files/1617a1ceb20860---salibegomafe.pdf
http://anhbanglaw.com/userfiles/file/xakokepido.pdf
http://gndpta.eu/news_objects/files/tepaxape.pdf
https://ntct-dz.com/ckfinder/userfiles/files/laresugebawowu.pdf
http://www.ezmoving.com/file/70827819198.pdf
http://www.iycadana.org/wp-content/plugins/super-forms/uploads/php/files/00ttkdqm97uv3s5b4akbujqrj2/zirijibasagujuwulaf.pdf
https://christschoolblr.in/userfiles/file/88744586666.pdf
http://kondicionery-ivanteevka.ru/upload_picture/file/vuxujoludokutimunaretor.pdf
https://hophamthaibinh.com/upload/files/15134026197.pdf

