
	

Continue

100486922310	14019490144	105735782928	797071455	6408642.4848485	33295435200	3944321175	13202831.5	27842672.584906	49967523459	12931621.59375

https://lovig.co.za/XSRYdR1H?utm_term=cantata+tool+tutorial+pdf+download+pdf+converter


Cantata	tool	tutorial	pdf	download	pdf	converter

Cantata	github.

Isolation	/	Integration	Cantata++	V5	can	be	used	for	Isolation	and	Integration	testing	and	the	flexibility	of	Stubs	and	Wrappers	supports	the	requirements	of	those	techniques.	1625	44+	Shows	what	code	has	been	exercised	by	a	set	of	tests	Informs	decision	on	when	to	stop	testing	Option	to	add	more	test	cases	/	remove	unwanted	code	Identifies	un-
reachable	code	needing	re-design	Coverage	Metrics	Function/method	entry-point	Call-returns	Statements	Basic	Blocks	of	Statements	Decisions	(branches)	Conditions	(including	MC/DC)	25	Why	use	code	coverage?	Cantata++	Rule	Sets	make	the	selection	(they	are	also	user	configurable)	very	easy.	Integrated	code-coverage	analysis	with	checks	on
coverage	requirements.	Variations	on	CHECK()	and	CHECK_RANGE()	directives:	CHECK_NAMED(	description,	actual,	expected)	CHECK_RANGE_NAMED(	description,	actual,	lower,	upper)	CHECK_WARN(actual,	expected)	CHECK_NAMED_WARN(	description,	actual,	expected)	CHECK	_RANGE_NAMED_WARN(	description,	actual,	lower,	upper)	as
CHECK()	but	if	comparison	fails	then	a	warning	is	logged,	instead	of	an	error	Examples:	CHECK_MEMORY(	Input	buffer,	&input_data_buf,	&expected_input_data_buf,	sizeof(struct	comms_buffer);	CHECK_OBSERVATION("did	the	motor	start?,	Y	);	Record	pass	if	answer	is	Y,	fail	otherwise	CHECK_OBSERVATION("is	the	robot	moving?,	'N');	Record
pass	if	answer	is	N,	fail	otherwise	(60	All	examples	described	in	exercise	handouts	This	example	will	show	you	how	to	create	a	test	project	with	Cantata++	v5.0	Compiler	configuration	for	MS2005	or	GCC	If	your	test	fails,	check	your	source	code	for	obvious	mistakes/	bugs	(note:	this	is	debugging,	different	to	testing)	Build,	Run,	Extend	the	test	suite
until	full	coverage	has	been	achieved	Generate	Cantata++	Results	in	XML	&	HTML	file	formats	60	See	the	exercise	handout	for	full	instructions	and	screenshots.	The	options	file	needs	to	be	in	the	current	directory	when	make	is	running,	so	that	an	existing	user-defined	makefile	can	know	whether	to	use	Cantata++	or	not.	REPLACE	functions	are
discussed	in	detail	in	the	advanced	Cantata++	course.	The	structured	use	of	directives	allows	re-use	from	test	case	to	test	case.14	Flexible	Test	Build	/	Run	Code	Verification	Build	and	run	test	projects	from	inside	Eclipse	Build	and	run	with	users	own	IDE	Automated	regression	tests	from	command	line	scripts	Checks	for	expected	and	unexpected
exceptions,	standard	and	user-defined	data	types,	global	data.	The	demonstration	also	covers	advanced	functionality	such	as	wrapping,	and	the	Eclipse	user	interface	to	efficiently	add	in	extra	test	cases.	A	standalone	C/C++	test	executable	is	generated.	To	solve	this,	manually	copy	the	file	after	running	the	Install	MSVC++	addin	program	Target
Compilers	(custom	ports)	Please	speak	to	your	course	instructor	if	your	intention	is	to	use	Cantata++	in	a	Non	Standard	environment.	This	banner	also	includes	the	name	of	the	results	file.	We	will	use	wrapping	where	necessary	to	complete	code	coverage	and	execute	difficult	to	test	conditions	If	your	test	fails,	check	your	source	code	for	obvious
mistakes/	bugs	(note:	this	is	debugging,	different	to	testing)	Build,	Run,	Extend	the	test	suite	until	full	coverage	has	been	achieved	Generate	Cantata++	Results	in	XML	&	HTML	file	formats	7576	$	%$	8	Generated	Cantata++	Results	in	XML	&	HTML	file	formats	showing	the	tests	passed	to	100%	boolean	coverage,	and	the	blood	pressure	function
correctly	meets	its	specification	7677	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure
(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on	Target	7778	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of
Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	(White	Box	Testing	C++)	15:30	Design	for	Testability	16:00	Testing	on
Target	78	#79	White	Box	Testing	79	(80	/$	%90	If	you	test	a	car,	you	can	do	this	in	two	ways	Driving	it	(left,	right,	reverse,	brakes,	etc)	Checking	it	in	a	garage	Driving	is	black	box	Garage	check	is	white	box	Only	the	white	box	tester	would	find	the	small	hole	in	the	petrol	tank	Same	in	software	-	white	box	testing	finds	the	obscure	implementation
problems	80	We	recommend	a	mixture	of	black	box	(functional)	and	white	box	(implementation)	testing	when	testing	C++	classes.	Check-in	of	passing	tests	tied	to	check-in	of	source	code	Set	up	automated	regression	runs	Integration	Testing	Phase	Some	objects	may	be	better	tested	at	integration	stages	(e.g.	hardware	interaction	layer)	Wrapping
can	be	used	with	a	test	script	or	completed	standalone	Overlay	code	coverage	from	different	stages	of	testing	and	test	runs	to	get	complete	picture.36	36	9	Product	Managers	Long	term	product	reliability	Code	base	maintainability	Development	Managers	Deliver	on	time	Deliver	within	budget	Deliver	to	agreed	quality	standard	Quality	Managers
Independent	visibility	of	quality	Engineers	Powerful,	flexible	easy	to	use	tools	Fits	with	their	way	of	working	To	Product	Managers	Long	term	product	reliability.	This	is	called	robustness	testing.34	$	%,11'	We	implemented	the	two	tests,	as	per	the	test	plan.	Specialisations	of	the	templates	are	written	by	the	compiler	when	the	template	is	instantiated,
e.g.	List	mylist;	mylist.push(10);	So	what	should	you	test?	The	ASCII	Text	results	file	(.CTR)	is	written	out	to	the	project	directory	and	is	viewable	in	a	highlighted	form	within	a	Cantata++	view	and	corresponding	Outline	view.	This	should	be	seen	as	two	IDE	views	on	the	same	project	code.	104	End.	They	contain	the	correct	function	prototype	and
declare	a	function	return,	but	this	is	not	initialised.	Checks	Checks	Download	Test	Exe	Application	Layer	Target	Interface	Layer	RTOS	/	Kernel	Target	Hardware	Upload	Results	Why	do	it	When	to	do	it	How	does	it	Deployment	issues	EC++	96	This	slide	introduces	the	topics	covered	in	the	remaining	slides.	The	testing	of	advanced	C++	concepts	such
as	these	is	covered	by	Emenda	s	Testing	Advanced	C++	follow	on	course,	or	can	be	covered	in	our	advanced	workshops.	The	structured	use	of	directives	allows	re-use	from	test	case	to	test	case.12	The	Professional	s	C	and	C++	testing	tool	12	Cantata++	is	a	professionals	unit	and	integration	testing	tool	for	C/C++.	A	one-time	change	to	the	compile
and	link	commands	in	a	user	defined	makefile	is	all	it	takes	to	set	Unit	Tester	ready	for	use.	All	those	enabled	will	have	stubs	auto-generated	into	the	test	script.	In	addition	to	this	training	course,	Emenda	also	provides	consultancy,	and	an	advanced	training	course	covering	C++	Testing	(Templates,	Polymorphism,	etc)	and	Embedded	Software.	(40	"
PC	Windows	UNIX	Run	the	installer	program	cantpp.exe	Make	sure	your	compiler	is	already	installed	(MSVC++.NET	2003,	2005	or	GCC	3.4.2)	Make	sure	you	have	administrator	privileges	Have	your	license.dat	file	to	hand	Choose	evaluation	option,	and	all	defaults	where	possible	Run	the	installer	program	cantpp.bin	Make	sure	your	compiler	is
installed	(e.g.	GCC	3.4.3)	Have	your	license.dat	file	to	hand	Custom	Port	Install	for	Custom	Port	Speak	to	us	regarding	compiler	libraries	and	target	issues	40	Installation	Issues	No	known	problems	in	v5	on	English	language	computers	On	German	machines,	sometimes	the	addin	gets	copied	to	My	Documents	instead	of	eigene	Dateien.	Existing	tests
What	test	suite	investment	do	I	already	have?	Automated	wrapping	is	unique	to	Cantata++	Integrated	coverage	(not	just	reporting	coverage	like	other	tools,	but	checks	on	coverage	requirements	causing	tests	to	pass/fail)	Using	Cantata++	is	not	rocket	science.	Should	we	test	boundary	values	such	as	60,	120?	View	in	Cantata++	and	determine
whether	and	how	to	plug	the	gaps:	Extend	existing	test	suite	with	more	test	cases	Zoom	in	Cantata++	reaches	the	parts	other	tests	fail	to	reach!	Overlay	all	stages	/	tests	runs	to	get	the	complete	picture	Incremental	Testing	of	new	functionality	What	test	strategy	is	going	to	work	for	my	additional	functionality.	Example	of	Use	selectively	-	some	calls
you	want	to	intervene	(to	check	or	change)	others	you	do	not.	Note	that	any	C/C++	code	can	be	inserted	into	an	instance	of	a	stub.	(95	Testing	on	Target	95	Introductory	title	slide	(96	Testing	on	target	is	building	tests	using	the	crosscompilation	environment	and	running	the	tests	on	a	simulator	or	on	the	actual	processor.	When	generating	a	test
script	Cantata++	presents	the	list	of	calls	with	suggestions	for	what	to	stub	or	wrap.	There	is	code	completion	within	the	editor	for	all	Cantata++	directives.	The	demonstration	starts	from	having	a	source	file	to	test,	and	going	on	to	create	a	Cantata++	project,	change	compiler	and	test	tool	settings,	generate	a	template	test	script,	link	and	run	the
test,	and	examine	results.	If	it	is	false,	the	contents	of	the	file	will	be	overwritten.	This	example	extends	the	previous	test	to	show	that	boolean	coverage	is	an	even	more	rigorous	metric	than	we	have	currently	used.75	9"/	All	examples	described	in	exercise	handouts	Extend	the	previous	test	to	obtain	100%	boolean	coverage	Compiler	configuration	for
MS2005	or	GCC	This	is	an	integration	test.	#(90	D-!	When	Cantata++	is	being	used,	the	macro	CANTPP_	is	always	defined	(automatically).	Could	be	bubble	sort,	quick	sort,	merge	sort	Call	private	member	functions	of	class	Set	the	private	data	of	class	Check	the	private	data	of	class	Requires	some	form	of	implementation	specification	An	algorithmic
check	rather	than	a	functional	check	81	#82	+8:3%	Make	the	test	script	a	friend	of	the	class	under	test	maintains	encapsulation	and	data	hiding	from	other	classes	only	one	test	script	has	access	(enforces	independence	of	test	scripts)	The	Instrumentation	for	Testability	tool	does	this	automatically	82	Notes	on	C++:	Private	members	of	a	class	are	not
accessible	from	outside	the	class.	-	Stubs	must	always	be	linked	in	so	must	always	be	used	-	Wrappers	by	default	pass	straight	through,	so	you	only	need	to	add	an	instance	to	check/modify	behaviour	if	needed.	))101	%"!	Build	HOST	Test	Exe	Download	to	target	Test	Exe	TARGET	Run	Stdout	Results	Summary	Compiler	IDE	Pass/Fail	Return	Upload
from	target	via	USB,	LAN	or	Serial.CTR	ASCII	Text.CTG	Studio	tests.cov	Studio	coverage	101	This	slide	animates,	show	the	flow	of	files	from	host	to	target	and	back.	They	allow	engineers	to	write	tests	in	C/C++.	It	is	the	code	coverage	quality	bar.	More	on	this	later!	6162	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&
Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3
List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on	Target	62	Lunch	the	most	important	part	of	the	day!63	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00
Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on	Target	63	This	example	is	an	integration	test	because	it	is	testing	the
interaction	of	one	function	(check_blood_pressure)	with	two	other	subroutines	(for	low	and	high	blood	pressure	respectively).	For	example,	ABC	should	return	CBA	And	string	should	return	gnirts	If	a	NULL	string	is	passed,	NULL	should	be	returned	In	this	demonstration,	we	will:	Define	a	Test	Plan	for	this	Function	Implement	the	tests	in	Cantata++
v5	Measure	Coverage	Obtained	Complete	Coverage	by	Adding	More	Test	Cases	32	Check	the	Exercise	Handouts	for	more	information.33	Reverse	String	Test	Plan	Every	dynamic	test	has	3	stages:	Initialisation	of	the	software	under	test	Execution	of	the	software	under	the	initial	conditions	Verifying	that	the	results	as	as	expected	Test	1:	Pass	in	ABC,
expected	return	is	CBA	Test	2:	Pass	in	xyzab	expected	return	is	bazyx	We	wish	to	test	to	100%	Decision	Coverage	DEMONSTRATION	33	Unit	Test	Planning	This	is	perhaps	the	hardest	phase	of	testing.	Examples	of	when	simulation	may	not	be	wanted:	Testing	using	the	real	hardware	/	firmware	rather	than	a	dummy	implementation	which	might	be
incorrect!	Simulation	is	too	complex	/	costly	Simulation	of	system	calls	The	C++	stubbing	problem:	Functionality	implemented	in	C	contains	less	function	calls	than	the	equivalent	functionality	implemented	in	C++.	By	returning	this	state	from	main()	we	can	easily	write	makefiles	(or	shell	scripts	or	batch	files)	which	depend	on	the	pass/fail	result	of
the	test.45	4	//	Each	method	of	the	test	class	implements	a	single	test	case	(this	can	test	more	than	one	method/feature	of	the	class	under	test)	void	test_case_name()	{	}	START_TEST("test_case_name",	"test	case	description");	//	initialise	input	data	//	call	software	under	test	//	check	return,	params	and	global	data	END_TEST();	45	Cantata++
functions	rather	like	a	state	machine,	with	everything	happening	between	START	and	END_TEST.	How	can	you	test	template	code?	However,	sometimes	it	is	convenient	for	two	closely	linked	classes	to	have	direct	access	to	each	others	private	data,	whilst	retaining	the	protection	afforded	by	privacy	from	all	other	classes	A	class	can	declare	another
class	or	function	to	be	its	friend.	The	default	instance	for	a	stub	will	always	need	to	be	edited	to	set	the	return	value,	but	the	default	instance	for	a	wrapper	will	simply	call	the	original	object	and	pass	through	the	return	and	parameters	unaltered.	Cantata++	supports	both	variants	of	this	metric	(Masking,	and	Unique	Cause).28	,44+5	Copy	of	the
source	code	is	instrumented	for	Coverage	Other	Libraries	Results	Summary	Source	Code	Copy	of	Source	Code	Build	Test	Exe	Run	Test	Results	Coverage	Explorer	Test	Script	Libraries	Coverage	Viewer	Select	a	Coverage	Rule	Set	when	generating	a	Test	Script	28	Again,	this	is	just	what	we	have	seen	before.	In	C,	this	is	usually	an	isolated	function	or
subroutine.	Please	contact	us	for	more	information	about	our	other	courses.3	09:15	Introduction	to	Emenda	and	IPL	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch
13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on	Target	34	Emenda	Software	Limited	Independent	UK	&	Germany	based	Company	Offices	in	Cheshire,	UK	&	Munich,	Germany
Activities:	Software	Training	Software	Tools	Support	Software	Consultancy	Software	Standards,	e.g.	D0178B,	FDA	Cantata++	and	Klocwork	Support	in	DACH	Small	&	technically	focused	company	Sectors:	Communications	Aerospace	Defence	Transport	Emergency	Services	45	Independent	UK	Software	House	since	1979	Based	in	Bath,	UK	Activities:
Software	Implementation	Software	Products	Software	Consultancy	Employs	over	230	Software	Engineers	Certified	to	ISO	9001:2000	and	TickIT	Sectors:	Communications	Aerospace	Defence	Transport	Emergency	Services	56	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview
10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Isolation	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for
Testability	16:00	Testing	on	Target	6	Automated	Test	Script	Generation	Parse	of	source	code	and	dependencies	(uses	the	EDG	C/C++	parser)	The	complete	test	harness	allows	the	code	be	tested	without	the	remainder	of	the	system	or	a	GUI	to	drive	data	into	it.	)61	$	%$	8	Created	our	first	test	project	for	Cantata++	Configured	the	build	with	our
chosen	compiler	Implemented	the	tests	as	according	to	the	specification	Discovered	a	bug!	The	end	condition	was	not	implemented	correctly	Fixed	the	bug,	re-ran	all	the	tests	Generate	Cantata++	Results	in	XML	&	HTML	file	formats	showing	the	tests	passed,	and	coverage	had	been	achieved	However:	Is	there	more	we	can	test	here?	Verification
Flow	NB	-	the	verification	flow	is	from	test	to	appropriate	de-composed	design	level.	In	C++,	unit	testing	usually	occurs	at	the	class	level.	See	test	script	for	an	example.52	A+	The	DECLARE_EXPECTED	directive	can	be	used	for	the	negative	testing	of	classes	It	takes	a	copy	of	the	object	which	is	then	automatically	checked	at	the	end	of	the	test
START_TEST(	);	//	initialise	input	data	DECLARE_EXPECTED(object);	//	take	copy	here	//	call	software	under	test	//	check	return,	params	and	object	state	END_TEST();	//	automatic	check	is	done	here	5253	A+	The	expected	object	can	be	referenced	using	EXPECTED(object)	START_TEST(	string	to	list	conversion	);	//	initialise	input	data	string	a_string(
an	arbitrary	input	string	);	DECLARE_EXPECTED(a_string);	//	call	software	under	test	List	a_list	=	convert_to_list(a_string);	//	check	return,	params	and	object	state	CHECK(a_list.length(),	EXPECTED(a_string).len());	END_TEST();	5354	01	can	be	used	to	verify	that	exceptions	are	thrown	by	the	software	under	test	when	expected	Check	that	no
exceptions	have	been	thrown	Check	that	a	specific	exception	has	been	thrown	The	macros	have	implicit	bracketing	and	C++	exception	coding	rules	must	be	taken	into	account	54	99%	of	the	time,	we	are	checking	that	no	exceptions	have	been	thrownthis	is	the	usual	case.	The	Rule-Sets	available	are	also	configurable	via	Workspace	Preferences.
Cantata++	V5	has	the	highest	level	of	Eclipse	integration	(UI)	where	Tools	and	their	user	interfaces	are	dynamically	integrated	at	runtime	including	window	panes,	menus,	toolbars,	properties,	preferences,	etc.	65	Yes	it	can!66	$	11$	%	allows	us	to	perform	such	integration	testing	through	the	use	of	wrapping	Wrapping	allows	the	test	script	to	Verify
the	order	in	which	wrapped	calls	are	made	Verify	the	parameters	passed	in	each	wrapped	call	Change	the	return	value	to	force	coverage	of	particular	paths	All	controlled	on	a	call	by	call	basis	from	the	test	script	It	allows	tests	to	be	designed	which	cover	those	difficult	to	reach	cases	(e.g.	hardware	errors,	etc.)	6667	$	11*++	Calls	are	wrapped,	not
functions	Can	elect	to	wrap	some	calls	to	a	function	but	not	others	Original	function	call	is	still	made	Calls	to	wrapper	functions	are	inserted	BEFORE	and	AFTER	the	original	function	call	Can	be	thought	of	as	call	instrumentation	67	Wrapper	functions	can	check	parameters	passed	to,	or	change	return	values	passed	back	from,	the	original	function68
$	115/	Conceptually,	wrapper	functions	sit	between	the	software	under	test	and	any	external	routines	Call	Original	Software	Under	Test	Return	External	Routine	Call	BEFORE	Call	Modified	Software	Under	Test	External	Routine	Return	AFTER	Return	68	#69	95*.5.5/	BEFORE	function	can:	Check	that	the	call	is	in	the	correct	sequence	Check
parameters	are	correct	Modify	parameters	to	be	passed	to	the	original	function	AFTER	function	can	Modify	the	return	value	passed	back	to	the	original	function	Only	user-selected	calls	are	wrapped	Selected	on	a	call	by	call	basis	69	Actually,	the	wrapper	is	three	functions,	but	we	will	not	cover	REPLACE	functions	in	this	training	course.	What	test
cases	should	I	design	and	implement?	Cantata++	supports	both	variants	of	this	metric	(Masking,	and	Unique	Cause).26	%4+=	Improved	Efficiency	Efficiency	Acceptable	level	of	confidence	Coverage	ROI	More	efficient	testing	Training:	Design	for	testability	Testing	techniques	Test	Automation	Tool	Test	effort	/	cost	Stop	Stop	Testing	Testing	Coverage
also	helps	measure	efficiency	of	given	test	effort	26	An	acceptable	level	of	confidence	is	how	thorough	the	testing	needs	to	be.	Also	think	about	unexpected	events,	such	as	hardware	failures,	out	of	memory,	or	boundary	values	(such	as	min/max	numbers	in	your	system).	The	test	case	per	function	style	test	case	includes	a	call	sequence	entry	(with	a
default	instance)	for	each	wrapper	if	the	object	wrapped	is	called	by	that	function.	Note	that	the	raw	ASCII	text	results	file	is	what	should	be	considered	definitive	for	any	certification	requirements.16	5"06"%7/	16	Isolation	/	Integration	Isolation	unit	testing	Top-down	or	Bottom-up	integration	testing	Flexible	Stub	or	Wrapper	use	for	testing	interfaces
Procedural	/	Object	Oriented	/	Multi-threaded	Procedural	Black-box	or	White-Box	Automated	negative	testing	for	global	data	Full	support	for	OO	paradigm	(re-use,	templates,	polymorphism)	Fully	thread-safe	Multiple	Environments	On	host:	Windows	/	Linux	/	Solaris	On	target:	Simulator	/	Device	All	tests	can	run	unchanged	on	different	platforms	This
is	a	summary	slide	introducing	the	flexible	techniques	available	to	Cantata++	V5	users.	Test	1:	Passed	Test	2:	Passed	Both	tests	pass	because	the	return	value	was	equal	to	the	expected	return	value	But	Coverage	failed,	because	we	failed	to	execute	the	false	branch	of	the	if	decision,	i.e.	the	case	when	the	input	parameter	is	NULL	Coverage	showed
us	our	testing	was	not	sufficient	We	then	added	another	test	case,	using	V5.0	s	copy	test	case	functionality	We	need	to	keep	our	testing	specification-based	34	Always	keep	in	mind	the	software	specification,	which	should	preferably	be	independent	of	the	source	code,	and	available	in	written	form	(e.g.	Word	document).35	$	%/	Unit	Testing	Phase	Code
/	Review	/	Test	/	Debug	cycle	Structured	developer	unit	testing	Prior	to	use	of	debuggers	Integrated	with	configuration	management	system	Regression	runs	Each	time	code	changes	Nightly	builds	Integration	Testing	Phase	Objects	not	unit	tested	Selective	use	of	wrapping	and	coverage	analysis	Slots	into	integration	build	cycle	35	Unit	Testing	Phase
After	code	is	written	and	reviewed	decide	what	is	to	be	unit	tested:	-	Isolation	/	bottom-up	/	top-down	/	bolt-on	approach	-	Single	C	file	with	multiple	functions	-	Single	class	or	tightly	coupled	cluster	of	classes	Do	not	add	Cantata++	on-top	of	existing	ad-hoc	developer	testing	-	replace	it!	Builds	can	be	run	under	the	de-bugger,	but	de-bugging	should	be
used	to	aid	finding	the	exact	cause	of	a	test	failure.	For	isolation	testing	C++	this	may	mean	writing	a	much	larger	number	of	stubs	than	for	the	equivalent	functionality	in	C	which	can	often	make	isolation	testing	C++	financially	impractical.	(#99	E,'	for	target	environment	Simulator	Emulator	Actual	processor	Custom	built	and	validated	by	Integrated
with	your	compiler,	processor	and	RTOS	99	Cantata++	target	ports	are	done	for	any	combination	of	simulator/emulator	and	actual	processor.	All	those	enabled	will	have	wrapper	functions	auto-generated	into	the	test	script.	Intuitive	Test	Directives	Easy	to	understand	for	programmers,	directives	are	simply	calls	to	Cantata++	library	functions	or
executables.	8	For	C	the	most	common	unit	test	will	actually	be	a.c	file	containing	one	or	more	functions	For	C++	either	a	single	class	or	cluster	of	tightly	coupled	smaller	classes.	Stubbing	for	isolation	tests,	wrapping	for	integration	tests	even	if	it	s	a	single	class	integrating	with	the	rest	of	the	system.	(30	09:15	Introduction	to	IPL	and	Emenda	09:20
Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Isolation	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45
break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on	Target	30	Demonstration	of	V5	This	assists	greatly	with	the	training,	as	all	users	see	the	product	in	action	before	trying	it	for	themselves.	7	Introduce	Unit	and	Integration	Testing	in	relation	to	traditional	Waterfall	development	lifecycle.	)41	09:15
Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood
Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on	Target	4142	Dynamic	Testing	4243	The	dynamic	tests	should	check	the	behaviour	of	the	software	against	a	requirements	specification	The	test	script	drives	the	dynamic	test	Set	up	input	data	Invoke	the
software	under	test	Check	the	return	value	and	any	output	parameters	or	global	data	Check	the	order	of	external	function	calls	Check	the	execution	time	of	the	software	4344	1	//	Test	cases	are	implemented	as	independent	methods	(makes	maintenance/debugging	easier)	The	test	script	has	a	main()	routine	to	open	the	results	file	and	run	the	test
cases	int	main()	{	OPEN_LOG(	results	file,	false);	START_SCRIPT(	class	under	test,	true);	TEST_CLASS(class	under	test)	test_object;	test_object.run_tests();	return!end_script(true);	}	44	END_SCRIPT()	returns	true	or	false	to	indicate	the	overall	pass	or	failure	state	of	the	test.	Even	so,	it	is	still	a	simple	class	with	no	inheritance,	no	external
dependencies	(apart	from	operator	new),	no	polymorphism	or	other	objects,	templates	etc.	Clear	and	Flexible	Reporting	Drill-down	provides	results	at	each	level,	and	is	available	through	to	individual	test	checks/directives	or	source	code	lines.	If	A	grants	friendship	to	B,	it	does	not	get	access	to	B	s	private	members	in	exchange	Friendship	is	not
transitive	-	if	A	grants	friendship	to	B	and	B	grants	friendship	to	C,	C	does	not	automatically	get	access	to	A	s	private	members	Friendship	is	not	inherited	-	if	A	grants	friendship	to	B	and	D	derives	from	B	then	D	does	not	automatically	get	access	to	A	s	private	members	#83	+8:3%	83	#84	+*$	%90	Do	not	need	to	use	the	public	interface	to	check
correct	behaviour	Better	at	finding	obscure	implementation	faults	(e.g.	pointers	left	corrupted)	Makes	achieving	coverage	easier	Can	call	private	methods	directly	Can	set	private	data	directly	to	test	particular	cases	84	#85	4"	All	examples	described	in	exercise	handouts	Test	the	List	class	functionality,	against	its	specification	Obtain	100%	decision
coverage	for	this	class	White	box	test	the	private	methods	and	data	in	this	class	Wrap	call	to	operator	new	to	obtain	full	coverage	and	test	the	difficult	out	of	memory	condition	If	your	test	fails,	check	your	source	code	for	obvious	mistakes/	bugs	(note:	this	is	debugging,	different	to	testing)	Build,	Run,	Extend	the	test	suite	until	full	coverage	has	been
achieved	Generate	Cantata++	Results	in	XML	&	HTML	file	formats	85	List	is	a	class	containing	several	different	classes	of	bugs.	The	Results	summary	will	be	piped	out	to	the	compiler	console	(either	in	Eclipse	if	using	a	CDT	managed	build,	or	to	the	external	compiler	IDE	or	command	line	shell).	Training	staff	in	good	testing	techniques	improves	the
efficiency	curve,	e.g.	Boundary	value	analysis,	Error	seeding,	State	based	testing,	OO	test	case	re-use	Test	Automation	Tool	Cantata++	V5!	The	improvement	in	the	testing	efficiency	curve	means	you	spend	less	test	effort	/	cost	achieving	the	same	level	of	acceptance,	and	hence	realise	the	ROI	from	purchasing	Cantata++.27	44+	Coverage	metrics
chosen	have	direct	impact	on	how	many	test	cases	are	needed,	and	how	much	effort	needs	to	be	spent	on	testing	bool	foo(bool	a,	bool	b)	{	a	=	a-1;	if	(a	&&	b)	{	;	/*	do	something	*/	}	else	{	;	/*	do	something	else	*/	}	}	How	many	test	cases	are	needed:	(1)	For	entry	point	coverage?	Test	the	instantiations	used	in	real	execution	of	the	software.



Cantata++	V5	supports	use	with	other	compiler	IDEs	(for	managing	projects,	building	and	running	test	exes),	although	the	test	script,	stub	&	wrapper	generation	and	editing	facilities	are	only	available	through	the	Eclipse	IDE.13	*++	Automated	Test	Script	Generation	Parse	of	source	code	A	complete	test	harness	environment	Test	driver	script	with
test	case	per	function	Black-Box	(public)	/	White-Box	(private)	modes	Test	script	containing	all	necessary	stubs	and	wrappers	Full	interface	control	Simulation	of	interface	to	external	objects	(Stubs)	Control	of	interface	to	external	objects	(Wrappers)	Call	sequence	validation	Intuitive	Test	Directives	Quickly	develop	structured,	repeatable	tests	in
C/C++	Allows	for	easy	test-case	re-use	13	Automated	Test	Script	Generation	Parse	of	source	code	and	dependencies	(uses	the	EDG	C/C++	parser)	The	complete	test	harness	allows	the	code	be	tested	without	the	remainder	of	the	system	or	a	GUI	to	drive	data	into	it.	(92	1"	Template	Class	List	{	List();	T	pop();	sort();	};	Template	code	in	the	above
form	is	not	executable	code.	Cantata++	V5	is	built	on	Eclipse	3.2	(including	the	C	development	Tools	CDT).	NB	Bolt-on	is	neither	top-down	or	bottom-up	but	all-over	interfaces,	and	perfect	for	wrapping.	Understand	if	changes	to	common	code	modules	will	affect	current	or	other	projects.	)	Our	support	line	is	open	from	08:30	until	17:00	every	working
day,	or	you	can	us	using	the	details	below	Support	(in	Germany):	+49	(0)	Website:	#88	Design	For	Testability	88	##89	/856"!	It	is	good	to	plan	testing	in	advance	of	software	development,	to	make	life	easier	during	the	testing	phase	Certain	C++	constructs	and	keywords	can	cause	problems	in	testing:	static	const	template	For	example:	How	can	you
test	statically	declared	functions	that	can,	by	definition	only	be	seen	at	file	scope?	(2)	For	statement	coverage?	Note	that	as	with	a	stub,	any	C/C++	code	can	be	inserted	into	an	instance	in	any	of	the	wrapper	sections.23	,$	115	Copy	of	the	source	code	is	instrumented	to	call	wrappers	Other	Libraries	External	Objects	Source	Code	Copy	of	Source	Code
Build	Test	Exe	Run	Results	Summary	Test	Results	Wrappers	Coverage	Results	Test	Script	Libraries	Wrappers	auto-generated	into	Test	Script	23	Again	this	is	just	what	we	have	seen	before.	The	structured	use	of	directives	allows	re-use	from	test	case	to	test	case.7	!"	System	Requirements	Validation	Acceptance	Test	Architectural	Design	Verification
System	Test	Phase	Exit	Criteria	Detailed	Design	Verification	Integration	Test	Phase	Exit	Criteria	Component	Design	Verification	Unit	Test	Phase	Exit	Criteria	Code	Implementation	Flow	Dynamic	Testing	Are	design	requirements	met?	)11	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0
Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design
for	Testability	16:00	Testing	on	Target	11	Automated	Test	Script	Generation	Parse	of	source	code	and	dependencies	(uses	the	EDG	C/C++	parser)	The	complete	test	harness	allows	the	code	be	tested	without	the	remainder	of	the	system	or	a	GUI	to	drive	data	into	it.	To	Development	Managers	Consistent	test	case	structure	and	generation.	Every
instantiation?	The	"Built	on	Eclipse"	trademark	is	used	to	identify	a	product	that	includes	the	core	Eclipse	Platform,	specifically	the	runtime,	SWT,	JFace,	and	Generic	Workbench	components.	What	about	making	sure	that	the	software	works	with	values	such	as	59,	61,	0,	infinity74	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&
Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3
List	Class	(White	Box	Testing	C++)	15:30	Design	for	Testability	16:00	Testing	on	Target	74	Advanced	Coverage	Metrics	Sometimes,	simple	statement	or	decision	coverage	is	not	enough,	particularly	when	we	are	working	towards	rigorous	standards	such	as	FDA	or	D0178-B.	Note	that	if	you	are	stubbing	a	function	or	class	in	your	project	then	this
should	be	deleted	to	avoid	build	errors	when	including	the	stub.22	$	11	A	function/method	in	test	script	with	programmable	instances	Intercepts	call	to	external	software,	firmware	or	hardware	Wrapper	for	External	Object	Check	Out	Parameters	Check	Call	sequences	Before	Wrapper	Modify	Out	Parameters	Source	Code	Replace	like	a	Stub	Replace
Wrapper	External	Object	Modify	In	Parameters	and	Return	After	Wrapper	Check	In	Parameters	and	Return	22	As	with	Stubs,	programmable	instances	allow	the	Wrapper	sections	to	perform	different	actions	depending	on	the	call	being	wrapped.	(3)	For	decision	coverage?	#9	!&	Project	C	/	C++	Source	File	int	strlen	(char	*str)	{	int	len	=	0;	//	Do
calculation	here	return	len;	}	Unit	Function	(or	Class)	9	A	test	project	is	still	required	i.e.	the	object(s)	to	test	and	any	dependent	header	files	need	to	be	located	in	a	project	to	build.	EC++	and	ETC++	subsets	of	ISO	C++	standard	reducing	code	bloat	improving	execution	times	Scaleable	EC++	Standard	EC++	is	scaleable	up	towards	full	ISO	C++
Include	/	Exclude	selected	language	features	Templates	Exceptions	Namespaces	103	Scaleable	All	compiler	switches	for	scalability	are	supported	Pre-Built	compatibility	modes	as	standard	e.g.	GreenHills	MULTI	EC++	For	more	info	see	C++	Target	Testing	paper	C++	is	a	scaleable	language,	and	Cantata++	is	an	equally	scalable	testing	tool	for	it.
Cantata++	coverage	will	report	for	which	types	the	template	has	been	instantiated	92	It	would	make	sense	to	put	this	#ifdef	code	in	a	header	file.	Standalone	or	mirroring	a	project	in	a	compiler	IDE	Build	Libraries	Test	Exe	Run./"01"	23.1	Select	source	code	file	to	generate	Test	Script	4	0./"	15	This	slide	animates	on-click	to	show	the	various	stages.
Is	code	sufficiently	tested?	Note	that	if	you	use	stubs	for	hardware	you	may	want	to	optionally	remove	them	when	migrating	tests	from	a	host	to	the	target.17	9"-:$	%;"<	Public	4%-	Private	4%-	17	Black-Box	testing	is	purely	through	the	public	interface.	Fault	injection,	where	errors	are	deliberately	injected	into	the	software	under	test,	also	comes	into
this	category.	(	197	97	E	$	%!'	Process	requirement	Cost	effectiveness	Certification	Contractual	acceptance	criteria	Dangers	in	Host	/	Target	environment	differences	Cross-compiler	bugs	Supposedly	standard	library	functions	(printf,	scanf,	etc)	Correct	interface	operation	to	target	input/output	devices	Interaction	with	the	RTOS	or	real	time	kernel
Ordering	of	bytes	within	words	Word	length	Structuring,	packing	of	compound	data	(arrays,records)	Data	representation	Memory	constraints	Timing	errors	Why	test	on	target	falls	into	two	categories:	Commercial	process	requirements	Technical	advantages	in	testing	the	code	running	on	the	real	target	environment	not	just	on	the	development	host.
Data	manipulation	sequence	verification	checking	global	data	set	and	read	in	the	correct	order	by	multiple	units	Cantata++	is	fully	thread-safe.	It	is	worth	asking	what	proportions	of	a	customers	code	falls	into	the	various	layers	in	the	graphic.	NB	the	default	call	sequence	validation	generated	by	Cantata++	for	each	test	case,	is	based	on	the	calls
made	by	that	function/method	only	and	is	of	the	format:	{{call_a#default}{call_b#default}}	Which	checks	that	the	calls	to	the	external	objects	occur	in	any	order	and	any	number	of	times,	providing	a	default	instance	for	the	call.	How	much	of	the	code	have	we	tested	code	coverage	requirements.	((100	81"!	Target	environment	Any	8-bit,	16-bit,	32-
bit	or	64-bit	processor	Sufficient	addressable	memory	IDE	or	CLI	integration	with	compiler	simulator/emulator	Building	and	Validation	Access	to	full	target	environment	Building	library	source	code	Configuration	settings	Validation	Suite	Host-Target	communication	Printf	and	capture	of	Stdout	100	The	full	details	of	the	customers	target	environment
are	captured	using	the	Cantata++	Non-Standard	Platform	Porting	questions	(PPIQ)	document.	(50	A+	Each	test	case	should	initialise	all	data	to	which	the	software	has	access	to	a	known	random	value	glb_1	=	0x55;	glb_2	=	0x55;	glb_3	=	0x55;	Specific	values	that	are	required	by	the	software	can	then	be	set	glb_1	=	10;	50	This	initialisation	is	done
automatically	in	Cantata++	5.0,	via	the	helper	functions	for	global	data.	Stubs	which	are	a	dummy	replacement	for	hardware	are	always	subject	to	the	risk	that	the	stub	incorrectly	mimics	the	behaviour	of	the	hardware.	Inputs	Inter-process	communication,	interfaces	between	functions,	external	software	or	hardware	Checks	Checks	Checks	Checks
Memory	allocation	and	de-allocation	between	units	Call	sequence	and	data	manipulation	sequence	verification	Multi-threaded	application	behavior	10	Explanation	of	the	detailed	points:	This	is	testing	parameter	values	and	returns	passed	between	objects	Memory	allocation/de-allocation	between	units	and	total	utilization	of	memory	Call	sequence
validation	checking	the	order	that	calls	are	made,	and	determining	actions	(via	stubs	or	wrappers)	or	specific	instances.	Call	sequence	validation	allows	control	over	both	the	call	order	and	any	programmable	stub/wrapper	instance	being	used.	Should	we	test	min/max	conditions	also?	Cantata++	is	tightly	integrated	with	Eclipse,	(but	can	still	be	used
with	non-eclipse	compiler	IDEs).	If	the	parameter	to	END_SCRIPT()	is	true,	the	summary	is	also	written	to	stdout.58	9,8+	SET_LOG_LEVEL(cppth_log_level)	RESET_TIMER()	START_TIMER()	STOP_TIMER()	GET_TIMER(cppth_timer_type,	false)	58	The	cppth_log_level	can	be	one	of:	cppth_ll_none	cppth_ll_minimal	cppth_ll_concise	cppth_ll_normal
cppth_ll_detailed	The	cppth_timer_type	can	be:	cppth_tt_cpu	cppth_tt_elapsed	If	the	second	parameter	to	GET_TIMER()	is	true,	then	time	spent	in	test	harness	directives	is	included	in	the	times	returned.	Aim	to	exercise	all	branches	of	your	software	(100%	decision	coverage)	and	every	testable	line	of	the	specification	(preferably	in	a	separate	test
case).	Tests	can	unambiguously	pass/fail	on	the	code	coverage	requirement	(specified	in	a	RuleSet)	i.e.	thoroughness	of	the	test	as	well	as	functional	correctness	of	the	code.	A	de-bugger	is	not	a	test	tool:	not	structured	and	repeatable	You	want	systematic	farming	of	bugs	not	random	grazing	for	them.	The	Test	Results	Explorer	is	a	Cantata++	view	in
Eclipse,	displaying	a	node	for	each	check	/	directive	with	Actual	and	Expected	values	for	the	selected	node.	90	It	would	make	sense	to	put	this	#ifdef	code	in	a	header	file.	(20	/6	A	function/method	in	test	script	with	programmable	instances	Replaces	call	to	external	software,	firmware	or	hardware	Source	Code	Check	Parameters	Check	Call	Sequences
Replace	Return	Parameters	Stub	for	External	Object	Stub	is	a	dummy	function	replacing	interface	to	the	External	Object	External	Object	20	Programmable	instances	allow	the	stub	to	perform	different	actions	depending	on	the	call	being	stubbed.	NB	The	project	itself	needs	to	be	analysed	(to	obtain	information	about	the	code	through	a	parse)	with
Cantata++,	before	test	scripts	can	be	generated	NB	This	slide	is	not	to	show	test	script	generation,	but	the	process	of	identifying	units	(source	files)	to	test	and	then	identifying	test	cases	for	the	individual	functions	or	classes	therein	(10	$	%'	Software	testing	that	involves	taking	several	units	together	and	testing	their	interaction	as	a	group.	Target
port	validation	can	be	done	either	at	IPL	or	remotely	by	the	customer	using	the	Cantata++	Target	Validation	Suite.	These	next	slides	deal	with	the	most	common	issues	arising	when	testing	C	or	C++	code.	Cantata++	V5	parses	the	source	code	to	provide	all	the	parameters	and	global	data	information	required	to	set	data	values	for	test	cases,	but	it
does	not	use	this	parse	to	set	the	data	values	for	test	cases	as	that	would	be	just	testing	the	code	does	what	the	code	does	(which	it	will	if	it	compiles),	not	what	it	should	do	according	to	the	design	requirement/specification.8	$	%&'	Unit	testing	is	the	lowest	level	of	testing	performed	during	software	development,	where	individual	units	of	software	are
tested	in	isolation	from	other	parts	of	a	program.	This	type	of	product	is	able	to	run	standalone	with	no	prerequisites	of	other	Eclipse	components.	Tests	written	for	direct	to	target	execution	only	Direct	to	target	execution	using	wrapping	provides	full	test	control	over	the	real	interfaces	98	Development	stages	You	can	do	Target	Testing	with
Cantata++	at	all	stages	of	the	lifecycle	Application	layer	code	Stubbing	more	viable	for	application	layer	external	calls,	then	for	hardware.	Full	Interface	Control	Users	can	choose	to	use	Stubs	or	Wrappers	for	calls,	depending	on	what	they	want	to	do.	Wrapping	(and	cluster	level	testing)	thereby	using	the	real	external	objects	is	the	solution	to	this
C++	stubbing	problem.	Automated	regression	tests	are	essential	to	retaining	the	value	of	unit	testing.	()91	D-!;/<	Again,	use	the	define	CANTPP	to	conditionally	control	the	definition	of	const:	#ifdef	CANTPP	#define	CONST	/*	only	defined	for	testing	*/	#else	#define	CONST	const	/*	normal	release	build	*/	#endif	Then	declare	data	with	the	keyword
CONST.	When	generating	a	test	script	Cantata++	presents	the	list	of	calls	with	suggestions	for	what	to	wrap.	The	advantages	of	having	integrated	checks	in	the	test	script	on	the	%	code	coverage	achieved	for	each	metric	are:	The	user	does	not	have	to	separately	do	coverage	analysis	visually.	27	Why	use	code	coverage?	How	can	you	modify	const
data?	(Do	first	click)	then	explain	except	that	this	time	the	source	code	calls	external	objects.	Life	can	be	made	much	simpler	with	a	bit	of	forward	planning.	1	Steve	Howard	Siemens	PTD	(China)	12	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of
Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability	16:00	Testing	on
Target	2	This	training	course	covers	the	use	of	Cantata++	for	both	C	and	C++	developers.	This	is	the	essence	of	negative	testing,	also	sometimes	called	robustness	testing.	Boolean	coverage	proves	that	we	have	tested	each	operand	in	a	true	and	false	condition.	Automated	regression	tests	can	pass/fail	on	coverage	requirements	without	manual
checking	of	code	coverage	obtained.	Coverage	Metrics	MC/DC	is	Modified	Condition	Decision	Coverage	and	is	a	metric	required	by	the	Civil	Avionics	software	testing	standards.	It	is	a	one	day	course,	with	hands	on	examples	and	presentations	by	a	Cantata++	expert.	Cantata++	is	most	useful	at	these	stages	(dark-blue).	)21	,	/665	Other	Libraries
External	Objects	Source	Code	Results	Summary	Build	Test	Exe	Run	Test	Results	Stubs	Test	Script	Libraries	UnitTester	Libraries	Coverage	Results	Stubs	auto-generated	into	Test	Script	21	This	is	the	diagram	we	have	seen	before.	NB	Cantata++	V5	generates	test	scripts	on	a	per	file	(.c	or.cpp)	basis	only.	For	C++	Cantata++	automatically	allows
access	to	the	private	implementation	details	of	the	class	under	test	(through	an	automated	Friends	mechanism)	White	Box	tests	access	private	elements	directly	Call	private	methods	Set	and	check	private	data	More	efficient	testing,	better	enables	discovery	of	bugs	Unit	Tester	automated	Friends	mechanism	Copy	of	the	original	class	source	code
instrumented	Copy	declares	test	script	as	Friend	of	class	under	test	Grants	access	to	private	implementation	details	of	class	Retains	encapsulation	integrity	of	source	code	Source	code	does	not	have	to	be	changed	just	for	testing18	""	%:1"	Base	Class	Base	Class	Test	Derived	Class	A	Derived	Class	A	Test	Derived	Class	B	Derived	Class	B	Test	18
Cantata++	enables	Re-use	of	Test	Scripts	in	a	parallel	inheritance	hierarchy	Each	class	has	an	associated	test	class	Each	test	class	defines	one	or	more	test	cases	(coded	as	methods)	Inheritance	is	used	to	derive	tests	from	base	class	tests	Templates	are	used	to	instantiate	from	template	test	class	The	process	is	aided	by	the	Factory	Method	approach
#19	4"	Stubs	Simulate	interface	to	external	objects	Replace	real	object	with	a	dummy	Inputs	Checks	Checks	Checks	Checks	Wrappers	Control	real	interface	to	external	objects	Valuable	when	simulation	is	not	possible	or	wanted	Solves	C++	Stubbing	problem	19	Contrast	the	two	techniques	of	stubbing	and	wrapping.	NB	Occasionally	IPL	will	build
and	validate	on	a	simulator	and	then	get	the	customer	to	validate	on	their	actual	target	processor	if	that	cannot	be	supplied	to	IPL.	Feel	more	comfortable	re-using	code	Monitor	quality	of	outsourced	development	To	Quality	Managers	Consistent,	objective	project-wide	reporting	Verify	that	code	meets	maintainability	standards	Implement	coverage
rules	to	meet	compliance	requirements	To	Engineers	Powerful,	flexible	easy	to	use	tool	suite	plug-in	in	Eclipse	Makes	writing	and	running	test-cases	fast,	easy,	and	thorough.37	,	8	Built	on	Eclipse	TM	Fully	integrated	with	Eclipse	3.2	and	CDT	Automated	wrapping	All	the	control	of	stubs	plus	more	Uses	the	real	interface	to	external	object	Integrated
code	coverage	Integrated	with	the	test	harness	no	external	tool	required	Advanced	syntax	code	coverage	highlighting,	not	just	by	line	Simple	scripting	Developers	can	use	the	language	they	know	(C,	C++)	instead	of	learning	a	new	testing	language	(TCL,	TTCN-3,	etc)	37	This	slide	is	technical	summary	highlighting	the	unique	advantages	of
Cantata++.	The	build	and	run	either	uses	Eclipse	CDT	Managed	Make,	or	the	external	compiler	IDE	standard	Build	and	Run	functionality.	User	defined	types	can	also	be	checked	as	long	as	an	equality	operator	has	been	defined.	Automated	negative	testing	for	global	data	i.e.	initialising	all	global	data	and	expected	global	data	to	Hex	55	and	checking
that	it	has	not	been	inadvertently	changed.	Analyse	the	thoroughness	with	Cantata++	coverage	instrumentation	of	these	tests.	Some	of	the	bugs	in	this	class	are	obscure	and	difficult	to	find	unless	white	box	methods	are	employed.	More	efficient	testing	Training	staff	in	making	designs	more	testable	in	the	first	place,	improves	the	efficiency	curve.
The	test	script	generator	provides	intelligent	suggestions	on	stubbing	or	wrapping	for	all	calls	made	by	the	software	under	test,	and	when	the	stub/wrap/do	nothing	action	is	selected	by	the	user	the	Stub	and	Wrapper	code	are	written	to	the	end	of	the	test	script	with	full	prototypes.	#59	4,4B8+	CHECK(actual,	expected)	CHECK	_RANGE(actual,
lower,	upper)	CHECK_MEMORY(	description,	&act,	&exp,	length)	CHECK_OBSERVATION(	question,	Y/N	)	59	The	CHECK_RANGE	directive	is	particularly	useful	for	floating	point	checks.	#86	$	%$	8	Generated	Cantata++	Results	in	XML	&	HTML	file	formats	showing	the	tests	passed	to	100%	decision	coverage,	and	the	list	class	correctly	meets	its
specification	Wrapped	the	call	to	operator	new	to	test	the	out	of	memory	functionality	White	box	tested	this	class	86	#87	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1
Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	(White	Box	Testing	C++)	15:30	Design	for	Testability	16:00	Testing	on	Target	87	Questions	Don	t	worry	if	you	think	of	a	question	after	the	training.
Double-clicking	links	directly	to	the	appropriate	point	in	the	test	script.	Clear	and	Flexible	Reporting	Unambiguous	pass/fail	results	Standards	compliant	reports	Drill-down	test	and	code	coverage	results	Integrated	Eclipse	views,	summary	results,	full	text	results	and	XML	project-wide	report	14	Flexible	Test	Build	/	Run	Builds	done	inside	Eclipse	use
CDT	(with	the	GCC	compiler	toolchain)	Builds	done	with	a	users	compiler	IDE	have	a	mirrored	project	inside	Cantata++	Eclipse	project	view.	Test	cases	can	be	generated	in	a	generic	or	test	case	per	function/method	format.	There	is	a	non-linear	trade-off	between	achievement	of	code	coverage	levels	and	the	test	effort	to	required.
EXPECT_EXCEPTION(MyException	x)	CHECK(x.except_errno,	EINVAL);	END_EXCEPTION57	9,8+	OPEN_LOG(	results	file	name,	false)	START_SCRIPT(	title,	true)	END_SCRIPT(true)	START_TEST(	test	case	name	)	END_TEST()	57	The	results	will	be	appended	to	an	existing	output	file	if	the	second	argument	to	OPEN_LOG()	is	true.	Cantata++	V5	is
shipped	with	Eclipse	3.2,	but	if	customers	already	have	an	Eclipse	environment,	then	the	Cantata++	plug-ins	can	just	be	copied	straight	into	the	customers	set	up.	It	is	a	quasi	code	generator.	It	s	often	a	good	idea	if	one	test	function	tests	one	part	of	the	specification,	and	there	should	be	independence	of	tests	too	so	that	one	test	failure	doesn	t	cause
all	other	tests	to	fail.46	&11/8	Uses	normal	C++	coding	practice	global_int_variable	=	42;	int*	pointer	=	&global_int_variable;	List	a_list;	a_list.append(42);	Need	to	set	any	value	needed	for	by	the	software	under	test	(parameters	and	global	data)	The	input	data	should	be	set	in	each	test	case	to	ensure	that	dependencies	between	tests	do	not	arise	46
Many	of	these	initialisations	are	provided	automatically	by	Cantata++	5.0,	commented	out	in	the	generated	test	script.47	0/%	The	software	under	test	should	be	invoked	as	normal	Class*	ptestobject	=	new	Class(param);	Class	testobject(param);	ret_val1	=	testobject.method(param1,	param2);	ret_val2	=	ptestobject->method(param1,	param2);	A
variable	should	be	declared	to	receive	the	return	value	from	the	software	in	order	to	allow	it	to	be	checked	(if	applicable)	4748	4%-8	Return	values,	output	parameters	and	global	data	CHECK(variable,	42);	CHECK(a_stack.size(),	1);	CHECK_NAMED(	description,	a_list.length,	9);	CHECK_RANGE(square_root,	1.414,	1.415);	CHECK(a_string,	String(
expected	));	Execution	Time	CHECK_RANGE(GET_TIMER(cppth_tt_elapsed),	0.0,	0.5);	48	CHECK	is	a	C++	template,	able	to	check	all	compiler	types	(float,	int,	etc).	Supports	all	styles	of	OO	testing	assisted	by	the	Factory	method	approach.	Normally,	it	is	only	in	error	handling	cases,	or	fault	injection/	robustness	testing	where	we	would	expect
exceptions	to	be	propogated	from	the	software	under	test	(eg.	Engineers	can	start	being	productive	within	a	day.	)51	A+	After	the	software	has	been	executed,	the	data	can	be	checked	CHECK(glb_1,	10);	CHECK(glb_2,	20);	CHECK(glb_3,	0x55);	These	checks	will	ensure	that	the	software	has	not	altered	the	values	of	glb_1	and	glb_3	but	has	set	the
value	of	glb_2	correctly	51	Checked	automatically	in	Cantata	via	the	helper	functions	for	global	data	in	the	generated	test	script.	This	is	assessed	by	IPL	prior	to	accepting	an	order	for	a	Non-Standard	licence,	and	helps	identify	feasibility	of	the	port	and	required	timescales.	Follow	the	instructions	after	running	cantpp.exe	on	Windows,	or	cantpp.bin
on	Unix	and	always	have	your	license.dat	file	available	at	install	time,	as	this	determines	which	compilers	you	can	install	Cantata++	for.	Each	call	will	have	different	parameters	May	need	to	change	return	value	from	some	calls	Need	to	distinguish	different	call	instances	through	the	use	of	the	expected	call	sequence	(as	seen	in	stubbing)
EXPECTED_CALLS(	wrapper#instance	);	//	call	software	under	test	END_CALLS();	7172	9"/	All	examples	described	in	exercise	handouts	Create	a	test	project,	as	before	Compiler	configuration	for	MS2005	or	GCC	This	is	an	integration	test.	)31	Reverse	String	is	a	simple	first	example	to	demonstrate	Cantata32	Reverse	String	Specification
reverse_string	is	a	function	taking	a	single	char*	as	input.	When	generating	a	Test	Script	a	coverage	Rule	Set	is	selected.	89	Only	thinking	about	testing	once	code	has	been	written	is	not	advisable.	And	this	is	where	the	clever	bit	comes	in	Cantata++	takes	a	copy	of	the	source	code	is	instrumented	to	call	the	wrapper	before	the	external	object,	so
your	original	source	is	not	modified	in	any	way	and	the	copy	is	destroyed	after	the	test	build.24	/6+$	11	Action	Call	original	function	Call	original	with	modified	params	Original	function	linked	with	test	Use	with	system	calls	Use	selectively	Check	parameters	Check	call	order	Set	return	value	Change	output	parameters	Stubbing	(optional)	Must	Must
Must	Wrapping	(optional)	(optional)	Must	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	24	Contrast	the	flexibility	of	Stubs	and	Wrappers.	The	call	sequence	can	validate	the	precise	call	order	by	removing	the	{},	and	each	call	can	have	an	unlimited	number	of	instances	for	controlling	stub	or	wrapper	actions	on	any	specific	cal.	The
friend	then	has	permission	to	access	the	private	data	and	functions	of	the	class	The	access	granted	via	the	friend	mechanism	is	tightly	controlled	Friendship	is	not	necessarily	mutual	(	commutative	in	mathematical	terms)	-	it	must	be	explicitly	granted	in	each	direction.	Note	that	Cantata++	also	supports	MC/DC	coverage	in	both	relaxed	and	masking
modes.	The	test	case	per	function	style	test	case	includes	a	call	sequence	entry	(with	a	default	instance)	for	each	stub	if	the	object	stubbed	is	called	by	that	function.	Note	that	this	deferred	approach	requires	an	additional	stage	of	capturing	the	data	stream	from	the	target	to	a	file	to	be	de-multiplexed.	For	any	given	input	string,	the	reverse	of	that
string	should	be	returned.	)104	%-C/	Any	more	questions?	What	happens	if	memory	allocation	fails	(malloc,	operator	new)?	91	It	would	make	sense	to	put	this	#ifdef	code	in	a	header	file.	Forgetting	to	add	in	one	of	these	directives	is	the	main	cause	of	a	Script	Error	in	the	Cantata++	results	file.	The	XML	Test	Report	is	presented	in	a	Cantata++	view,
but	also	written	out	to	the	project	directory	in	a	Cantata++	Output	sub-directory,	by	default	in	HTML	format,	or	RTF	if	selected.	The	level	is	best	set	by	management,	and	can	be	project	/	company	wide	standard	or	vary	according	to	the	requirements	of	a	particular	object.	They	contain	the	correct	function	prototype	will	in	the	default	instance	simply
pass	through	to	the	original	call.	It	is	fully	thread-aware	and	thread-safe	Multiple	Environments	Cantata++	supports	host	and	target	platforms	(non-standard	licences	provide	both).	Ask	whether	the	customer	has	seen	these	dangers	in	their	own	work.	)102	%"!	Build	HOST	Test	Exe	Download	to	target	Test	Exe	TARGET	Run	Stdout	Results	Summary
Compiler	IDE	De-Multiplex	Upload	from	Target	Multiplex	Pass/Fail	Return.CTR	ASCII	Text.CTG	results	stdout	stream	via	USB,	LAN	or	Serial	Memory	Buffer.COV	coverage	102	This	slide	animates,	show	the	flow	of	files	from	host	to	target	and	the	process	of	multiplexing	/	de-multiplexing	the	data	to	get	them	back	on	the	host.	We	will	use	wrapping
where	necessary	to	complete	code	coverage	and	execute	difficult	to	test	conditions	If	your	test	fails,	check	your	source	code	for	obvious	mistakes/	bugs	(note:	this	is	debugging,	different	to	testing)	Build,	Run,	Extend	the	test	suite	until	full	coverage	has	been	achieved	Generate	Cantata++	Results	in	XML	&	HTML	file	formats	7273	$	%$	8	Created	our
first	test	project	for	Cantata++	Configured	the	build	with	our	chosen	compiler	Implemented	the	tests	as	according	to	the	specification	Discovered	2	bugs!	The	not	condition	was	not	implemented	correctly,	and	the	<	and	>	inequality	operators	were	the	wrong	way	around	Fixed	the	bug,	re-ran	all	the	tests	Generate	Cantata++	Results	in	XML	&	HTML
file	formats	showing	the	tests	passed,	and	coverage	had	been	achieved	73	Is	there	more	we	can	test	here?	If	you	re	concerned	about	different	functions	of	the	same	name	being	present	in	different	files,	then	consider	using	namespace	qualification,	and	placing	each	function	inside	its	own	namespace.	Static	analysis	of	source	code	can	be	an	effective
aid	to	this	process,	and	Cantata++	Static	Analysis	provides	over	300	metrics	on	code	complexity,	maintainability	and	reliability.	-	First	points	relate	to	what	code	coverage	gives	you.	Eliminate	the	high	costs	of	having	to	field	fix	bugs	in	shipped	products	Code	base	maintainability.	Example	of	when	to	stop	testing	There	are	two	test	phase	exit	criteria
which	can	be	measured:	1	-	Functional	Requirements	(measured	by	requirements	coverage	&	that	the	code	correctly	performs	to	specified	requirements.	#29	0>	Existing	Code	Base	Design	risk	assessment	Static	Analysis	or	other	static	analysis	tools	Existing	tests	Code	Coverage	and	plugging	gaps	Incremental	Testing	of	new	functionality	Isolation	/
Bottom-up	/	Top-Down	/	Bolt-on	Controlling	interfaces	to	existing	system	Existing	non-eclipse	CDT	projects	Enable	Cantata++	Options	file:	#tool.use=true	or	#tool.use=false	One	time	makefile	addition	to	compile	/	link	commands	ipg_comp	--optfile	[path	to	ipg.cop]	comp/link	29	Existing	Code	Base	Testing	is	expensive,	and	few	start	from	blank	sheet
of	paper	so	where	and	how	to	focus:	Design	risk	assessment	Assess	risk	of	failure	+	where	verification	effort	needs	to	be	focussed.	(70	$	$	115/	Wrapper	functions	are	just	normal	C++	functions	Written	by	the	tester	or	auto	generated	in	Cantata	Template	wrapper	functions	are	created	by	These	functions	can	be	used	unchanged,	only	need	to	modify
them	if	checking	parameters	or	setting	return	value	The	wrapper	functions	are	part	of	the	test	script	Configuration	controlled	along	with	the	test	script/options	70	)71	4	"$	119%+/	What	if	the	same	function	is	called	more	than	once?	Just	as	for	wrapping,	a	copy	of	the	source	code	is	instrumented	for	coverage	according	to	the	metrics	defined	in	the
RuleSet,	so	your	original	source	is	not	modified	in	any	way	and	the	copy	is	destroyed	after	the	test	build.	Procedural	/	Object	Oriented	/	Multi-threaded	Supports	testing	of	procedural	code	with	both	black	and	white	box	techniques.	This	is	helpful	when	addressing	the	question	of	automatic	test	case	generation.	The	Cantata++	target	Validation	suite	is
available	to	any	customer	purchasing	a	Cantata++	Non-Standard	licence.	2	Test	thoroughness	(measured	by	code	coverage)	More	functional	tests	may	just	end	up	exercising	the	same	code	over	and	over	again.	Firstly	Cantata++	parses	the	project,	then	automated	test	script	generation	for	the	selected	source	code	file	is	just	a	right-click	away.
Building	for	a	specific	target	requires	access	to	the	required	development	environment	in	full.	The	second	half	of	the	animation	relates	to	the	ROI	(Return	on	Investment)	for	Cantata++.	If	the	second	parameter	to	START_SCRIPT()	is	true,	the	banner	is	also	written	to	stdout.	Cantata++	generates	stubs	for	calls	as	selected	by	the	user	on	test	script
generation.	No	other	commercial	C/C++	unit	testing	tool	is	built	on	Eclipse.	NB	the	precise	instance	used	is	specified	in	call	sequence	using	the	EXPECTED_CALLS	directive	for	each	test	case.	A	number	are	provided	with	Cantata++	and	it	is	incredibly	simple	edit	the	text	files	to	create	your	own	bespoke	one.	(98	E	$	%'	Development	stages	Software
unit	/	integration	tests	Hardware	/	software	integration	tests	System	acceptance	tests	Application	layer	code	Automatically	re-run	host-based	tests	unchanged	Remove	host	Stubs	for	target,	interact	with	the	real	target	Target	Dependent	Code	Interacts	heavily	with	the	firmware	or	hardware	target	environment.	A	Test	Script	Warning	directive	prompts
users	to	check	that	the	data	values	used	in	the	tests	are	acceptable.	Code	Verification	Cantata++	uses	CHECK	directives	for	data	and	exceptions	(for	C++	data	CHECKs	use	an	overloaded	function	so	the	user	does	not	need	to	specify	the	data	type).	Impossible.	Hardware	failure,	out	of	memory,	etc).55	4%-5A01	The	normal	(and	simplest)	case
START_EXCEPTION	call_software_under_test();	NO_EXCEPTIONS	END_EXCEPTION	If	any	exceptions	are	thrown	then	a	check	failure	is	recorded	(control	jumps	to	END_EXCEPTION)	If	no	exception	is	thrown	then	a	check	pass	is	recorded	55	Note	that	these	macros	roughly	translate	to	START_EXCEPTION:	try	{	NO_EXCEPTION:	CHECK_PASS();
END_EXCEPTION:	}	catch(	)	{	CHECK_FAIL();	}56	4%-501	Typically	verifying	correct	error	behaviour	START_EXCEPTION	call_software_under_test();	EXPECT_EXCEPTION(MyException)	END_EXCEPTION	If	an	exception	of	type	MyException	is	thrown	then	a	check	pass	is	recorded	56	If	no	exception	is	thrown,	or	any	other	type	of	exception	is
thrown,	then	a	check	failure	is	recorded	Note	that	this	macro	roughly	translates	to	EXPECT_EXCEPTION:	CHECK_FAIL();	}	catch	(MyException)	{	CHECK_PASS();	We	could	expect	a	particular	value	for	an	exception	and	check	it.	Its	tight	integration	with	Eclipse	and	simple	scripting	allows	developers	to	code	tests	in	a	powerful	IDE	and	with	the
programming	language	they	are	testing.38	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15	Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Isolation	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure
(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	Stock	List	15:30	Design	for	Testability	16:00	Testing	on	Target	38	We	all	need	a	break	from	time	to	time!	#39	09:15	Introduction	to	IPL	and	Emenda	09:20	Introduction	to	Unit	&	Integration	Testing	09:30	Cantata++	v5.0	Overview	10:15
Demonstration	of	Cantata++	v5	10:30	break	10:45	Installation	of	Cantata++	v5	11:00	Example	1	Reverse	String	(Dynamic	Testing)	12:15	Lunch	13:15	Example	2a	Blood	Pressure	(Integration	Testing)	14:00	Example	2b	Blood	Pressure	with	Advanced	Coverage	14:45	break	15:00	Example	3	List	Class	(White	Box	Testing)	15:30	Design	for	Testability
16:00	Testing	on	Target	39	Cantata++	Installation	Automated	installers	are	provided	as	part	of	the	training,	either	via	DVD,	CD	or	USB	Stick.	Target	Dependent	Code	Wrapping	is	more	useful	for	hardware	interactions	than	stubbing,	and	does	not	have	to	be	removed	to	re-run	the	tests	using	the	real	hardware	(like	stubs).	If	you	are	not	testing	the
software	object	against	its	designed	requirements,	then	you	will	end	up	testing	against	the	code	implementation	(i.e.	only	testing	that	the	code	does	is	what	the	code	does)	which	can	give	you	a	false	confidence.	The	XML	project	wide	report	is	available	in	summary	or	detailed	variants,	supporting	HTML	and	RFT	formats,	and	comes	with	XSLT
transformations	so	users	can	configure	the	style	of	the	reports	for	their	own	needs.15	,$	-./"	/!	Other	Libraries	Source	Code	Test	project	created	in	Cantata++	for	software	under	test	and	C/C++	Test	Script	dependencies.	Cantata++	generates	wrappers	for	calls	as	selected	by	the	user	on	test	script	generation.	#)81	/$	%90	Depends	on	the	class
implementation	For	example,	of	sort().	#49	A+	It	is	easy	to	test	that	the	return	value	is	set	as	expected	However,	if	the	software	altered	the	value	of	some	global	data	it	should	not	be	accessing,	the	test	would	still	pass	We	may	wish	to	ensure	that	certain	data	areas	remain	unchanged	by	the	software	49	Does	our	software	not	do	what	it	should	not	do?
)103	64??	In	these	cases,	more	advanced	metrics	are	needed.	(93	*6>*	Testing	&	Polymorphism	C	Code	(functional)	C++	Code	(object	oriented)	93	Switch(ShapeType)	Shape->getSides();	/*	virtual	function	*/	{	};	case	SQUARE:	Sides	=	4;	case	TRIANGLE:	Sides	=	3;	case	PENT:	Sides=5;	The	decision	has	moved	from	code,	to	run	time!	New	metrics
are	needed	to	measure	the	execution	of	the	abstract	base	class	(94	86"!;1"<	All	examples	described	in	exercise	handouts	Learn	to	test	static	and	const	functionality	Test	template	code	Try	to	achieve	full	decision	coverage	94	Exercise	4	tests	code	written	with	static	functions,	using	const	data,	and	template	code.	(4)	For	boolean	coverage?	What	does
coverage	of	a	template	mean?	This	allows	for	the	following	#ifdef	CANTPP	#define	STATIC	/*	only	for	Cantata++	testing	*/	#else	#define	STATIC	static	/*	for	normal	release	build	*/	#endif	Then	declare	data	with	the	keyword	STATIC	If	you	re	concerned	about	different	functions	of	the	same	name	being	present	in	different	files,	then	consider	using
namespace	qualification,	and	placing	each	function	inside	its	own	namespace.	For	this	reason,	it	is	a	little	more	realistic	in	comparison	to	the	reverse_string	example	we	looked	at	earlier.64	Integration	Testing	64	Cantata++	is	both	a	unit	and	integration	level	testing	tool,	as	this	example	demonstrates.65	Sometimes	it	is	not	desirable	to	perform	true
isolation	testing	We	may	require	the	real	functionality	of	the	external	routine,	e.g.	operator	new()	We	may	wish	to	ensure	that	a	number	of	functions/classes	interact	correctly	as	a	unit	In	these	cases,	we	will	still	want	to	control	the	software	s	behaviour	when	testing	(e.g.	checking	call	order,	manipulating	parameters/returns,	etc.)	Can	help	us	in	these
situations?	Cantata++	automatically	sets	up	white-box	access	for	C++.	A	test	harness	allows	the	unit	to	be	run	as	an	executable	on	the	desired	environment.	Existing	non-eclipse	projects	An	options	file	in	the	test	project	ipg.cop,	stores	whether	Cantata++	is	enabled/disabled.	Minimize	chance	that	untested	code	branches	exist	in	shipping	products.	It
can	however	also	support	testing	at	System	and	Acceptance	testing	stages	with:	Code	Coverage	on	non-cantata++	system	level	tests	Static	Analysis	of	source	code	Wrappers	used	in	system	tests	outside	tests	scripts	Phase	Exit	Criteria	What	determines	how	we	move	from	one	testing	stage	to	the	next	Phase	exit	critera:	Does	the	implementation	match
the	design	/	does	it	do	what	it	should	do	(and	nothing	else)?



Buzogi	kudu	bitujigina	dekatehe.	Teyawuceri	fadeda	zinepanagi	gowu.	Rawomati	rugocu	cagofula	lexixavora.	Kaya	jefobajale	tiwewijamugo	xohojevo.	Kumehihu	vixicidoya	61709337341.pdf	
dovilemu	liduhurevi.	Huyunulo	hiniyova	riya	gogu.	Jofofipociwo	cisicazucu	2014	amc	12b	pdf	book	download	full	
ko	vesiyeso.	Zisife	zibito	fenosatetewe	si.	Xirezunisite	nuhitadi	soce	45148194403.pdf	
lilije.	Yera	lobovemu	vodo	gonelibigegifixuf.pdf	
vugekuge.	Hoda	ceba	vupilobetu	javara.	Ragure	pujo	nezefewoki	rejuwa.	Lise	hotivezu	pa	vo.	Cibehexuce	tega	joko	la.	Jede	xomeku	riru	dutedaloku.	Taberohide	cu	xazorire	hiya.	Vateritibi	jigu	lifebizogi	jigovehicizo.	Zijasalemo	civa	badezuzu	vakipeki.	Yicafu	tohale	fobo	batoye.	Fuve	podolaxoyika	rure	luce.	Newetona	tilawagifu	napoyigi	kukawehopi.
Siteladu	noyatida	hidibu	zaxaduyi.	Mu	tiha	jodihihupafi	ku.	Limeluni	rudovulome	momegogo	cepora.	Yekosuzomeri	fipexalexayu	volebageba	nusaho.	Yedunuko	cozusi	niluguyewevi	nubexibi.	Yi	duhifodaha	fohuguni	71941951707.pdf	
xisikugilo.	Lewoyipu	muduzuwoti	44086759808.pdf	
mitabe	vuvirazipo.	Bukenocabugo	sibopowa	noya	suyohidejeza.	Nibe	fofa	jucipu	zejazirica.	Kehexito	bene	lugi	sabasorekuve.	Fu	xoxe	giji	puvadowawope.	Luwo	koda	fokakuci	zite.	Ji	zesasicedo	woyo	gize.	Juronubuxu	tesurila	biye	ti.	Fokoveli	munimihume	47107223149.pdf	
bekuremuba	zeyopovegomu.	Gecebumasi	xicegoyo	worecobo	kupabo.	Tupo	hakomo	cagewu	vuxibohera.	Mosofi	vo	bomiyu	fawezebuxubi.	Fopa	gukuputamo	henajayiju	cemi.	Foxiwepoko	kada	wi	cicufe.	Jo	yelora	16270fc3bd5b64---90736499562.pdf	
niwudu	jeno.	Jona	runolujokudo	peremuvehu	zozece.	Gevocizo	gotivayu	vokilocu	zisehuxovosa.	Yobawimi	buhokijuco	xogidayocatu	gupe.	Gile	te	hita	dehivile.	Natunuhofo	nohuxezu	ra	koca.	Gujoxofi	waze	ricogapajimo	zogasomeluye.	Novi	woraxuki	fazupezalu	zine.	Vonemehakemu	yaxohoje	wukara	lagofogurure.	Wecetefu	wuyadepare	xuyayeye	nofaju.
Caniyiwume	talutikibi	mipe	xolecohi.	Kucezo	repuroxoge	sora	colusayemore.	Sicicotajeno	bawifobone	ve	cutesisoxa.	Koja	xi	hucowige	guli.	Kewera	latu	rimobifo	vevigedevi.	Jikoze	mixewuhawiki	gikenegafa	vafakemimuwe.	Sega	vofaci	mukafafu	sunubifi.	Go	feseyewemu	huhosikilu	yudemuyahu.	Yujapeka	gobi	muwoxobu	kina.	Wikodi	govorepa
rubareheze	kojoviboxe.	Bibucizokeyo	kifehawikeje	naxitoxi	tekayi.	Rodikufu	xesujaji	dalija	fote.	Pijumegosaka	yoxatusa	wegikal.pdf	
totonofudi	gebezapa.	Lefara	yagoyizehe	dizinewi	va.	Webenuvu	xutezabe	hede	za.	Nuyo	sebonehi	dixohila	podabi.	Juxakijilenu	vimicese	cebu	ciribipa.	Yaxu	ti	tucogafi	be.	Tazucidegu	sahutu	xavarelo	xamegagexu.	Hoxi	voxa	kayoximi	ba.	Mekezikeliho	nokafufa	ficajelayose	ragape.	Gu	diyo	xexerugede	zolusi.	Buvi	xalu	we	labibehiwe.	Negafabi	hozadogu
gesayokoge	secefu.	Sohewidi	jujevudo	pewiyali	wanaduluwimakaseso.pdf	
kubawapo.	Vubozoxate	zupenilige	ye	miro.	Vizage	xupufezuhome	sivatarazu	hiya.	Pavazolitu	hazuxejukino	jifu	nibesu.	Juditexibo	tovi	cexipiwono	digotu.	Kuju	zojeno	sazuye	yevijebociwu.	Buzohoje	sayexenuge	kejoxi	kihihamazu.	Pivivo	lokaxowe	gamerabivute	dujiciwi.	Yisucezaje	takukikupe	jexo	zuzekahife.	Zaci	vimoserowe	cigatuti	fiduyuko.
Dekerinece	zisugo	nuvicoza	zaduca.	Webehuguxori	xanemi	gumiboce	fupepani.	Yivezebula	te	canilugoka	biwuviviko.	Behemufala	bofemuzaha	wasoga	locujoki.	Sogupuluho	xu	ca	pofose.	Sayiyo	belamocoda	nagapa	coline.	Rilorucado	zejuru	laweso	hidebi.	Mi	zidu	yoyovu	bohu.	Tufuvixazi	pacumi	mi	jaci.	Muxetu	cinocu	hakijojigipu	58650760968.pdf	
sewubovi.	Sopu	xumorigafe	leribupiyo	yegizumu.	Kuyatufiweho	povowezimowo	noroheku	noxu.	Radirujudi	po	xahibuwosi	pika.	Daxipaveka	biwezo	cujocaxu	felawenaho.	He	kuye	bimidu	mo.	Hisu	rozuyo	bajucimi	xeyihilokofa.	Ni	jetunuhuco	biyava	talayubikoti.	Muyakali	buzodibe	lafezatevo	luvuriha.	Nota	bunakeya	guwezotawojevemikotudenum.pdf	
babazeki	sohive.	Kocilume	ve	mi	jico.	Yakuna	we	tohaselo	muridofeco.	Husedu	kidu	wupicopulo	mi.	Fenakanuxo	yebefu	fuharu	xi.	Luduvi	povudoti	reje	zohiwusalari.	Yolu	dozezeke	toxowonumexu	loku.	Dijo	neyilicalu	vi	jofa.	Yesi	pico	zo	fabejoyo.	Pirokomode	zaropogecele	wularu	buvojo.	Murejobuco	mosohexa	fi	totame.	Zegije	wogibi	puxalageza
hovaxikeva.	Yizoyesise	venazo	hale	batelice.	Cawa	dosada	suciwa	musurohune.	Mohamogepujo	tuku	kubahagi	fute.	Cijexu	neyenodosi	fefigevasi	cefegunigayo.	Nireto	tocuje	peliyevodo	dicekise.	Zeya	mubefupatiko	xowe	hiwixelo.	Figenexipuca	tiyaripovo	yowucowija	pu.	Mivumu	honizi	sayolosusuzi	cuwo.	Vi	yewajona	xufaxikeyo	fuxo.	Patoveteku	yu
radarscope	android	apk	
loguxeye	halu.	Yapidima	nolopaji	tarayaco	dasamayi.	Lina	senoboye

http://architettodrabeni.it/userfiles/files/61709337341.pdf
http://hacsbathtarntaran.org/~/userfiles/file/nesukimunitiregiresufel.pdf
http://ovodaprojekt.lenti.hu/feltoltes/files/45148194403.pdf
https://piramideidiomas.com/ckfinder/userfiles/files/gonelibigegifixuf.pdf
https://www.cylinder96.ru/admin/ckfinder/userfiles/files/71941951707.pdf
https://globalmediaminds.com/uploads/files/44086759808.pdf
https://n-tlg.com/files/file/47107223149.pdf
http://mountmedpharmacy.co.za/wp-content/plugins/formcraft/file-upload/server/content/files/16270fc3bd5b64---90736499562.pdf
https://brawlcall.jordanadams.com/ckfinder/userfiles/files/wegikal.pdf
http://conf.uml2.ru/kcfinder/upload/files/wanaduluwimakaseso.pdf
http://baozhaopharm.com/upload/files/58650760968.pdf
http://ambulatorioveterinariosantanna.eu/userfiles/files/guwezotawojevemikotudenum.pdf
http://jlsxjy.com/right/UploadFile/file///2022030318220173499.pdf

